Part Number Hot Search : 
TM128 2SB605 BTN7970 CA55599 DG302 C2331 A5800924 BZX79C62
Product Description
Full Text Search
 

To Download TA1310ANG Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  TA1310ANG 2005-09-20 1 toshiba bipolar linear integrated circuit silicon monolithic TA1310ANG ntsc video, chroma, deflection, and distortion compensation ic (with yuv interface and acb) TA1310ANG is video chroma and deflection signal. processing ic for ntsc. on a 56-pin shrink dip package. TA1310ANG has deflection distortion compensation. TA1310ANG uses an i 2 c bus controls for controllings and settings. features video signal processing built-in y delay line black stretch dc restoration ratio compensation aperture controlled sharpness output for velocity scan modulation (vsm) white peak suppression (wps) chroma signal processing built-in chroma bpf / tof r-y and b-y outputs color / bw situation output by read bus sync signal processing counts down 32 f h dual afc vertical agc hd and vd outputs vertical frequency fixed mode horizontal and vertical position alignment dc outputs for vertical centering text signal processing analog rgb inputs digital rgb inputs halftone switch (y m ) cutoff and drive alignment yuv inputs acb weight: 5.55 g (typ.)
TA1310ANG 2005-09-20 2 deflection correction function horizontal and vertical amplitude adjustment vertical linearity correction vertical s correction vertical eht correction e / w parabola correction e / w corner correction e / w trapezium correction
TA1310ANG 2005-09-20 3 block diagram
TA1310ANG 2005-09-20 4 pin function pin no. symbol function interface i / o signal 1 vsm out vsm means verocity scanning modulation. 2 gnd i the terminal for gnd of video / y / text circuits. D 3 4 5 r in g in b in the terminals for analog rgb signal input. input signals clamped by coupling capacitors. (*) : even when not in use, connect to gnd with a coupling capacitor. 6 y s / y m in the terminal for switching of analog rgb mode and half tone. 7 8 9 osd r in osd g in osd b in the terminals for analog osd rgb signal input. input signals clamped by coupling capacitors. (*) : even when not in use, connect to gnd with a coupling capacitor.
TA1310ANG 2005-09-20 5 pin no. symbol function interface i / o signal 10 osd y s in the terminal for switching of internal rgb signals and analog osd rgb signals (pin 7, 8, 9). 11 abl in the terminal for the external unicolor and brightness control. abl gain and abl start point can be set by using bus. open 6.0 v 12 vk out the terminal outputs signal in order to input in h-correction (pin 42). the signal corresponds to rgb signal. 13 14 15 r out g out b out the terminals for rgb signal output. 16 v cc (9 v) the terminal for v cc supply 9 v. the terminals is connected to 9 v (typ.). D 17 18 19 r filter g filter b filter control the rgb output cutoff voltage, holding the standard pulse period comparator output to one vertical period. at acb on, the filters operate so that the ik in (pin 20) voltage equals the value determined by the bus (when rbg cutoff : center, 1 v p-p .) the filters must be low leakage current filters.
TA1310ANG 2005-09-20 6 pin no. symbol function interface i / o signal 20 ik in terminal for detection of ik feedback signal. leakage canceller incorporated. 21 v centering the terminal for the dac output that controlled by bus (v-center). 22 ew fb the terminal for e / w feedback. 23 ew out the terminal for output of e / w drive signal. 24 v out the terminal for output of vertical drive signal. 25 v nfb the terminal for input of vertical negative feedback. if input voltage is less than 2 v, v-guard function works and blanks rgb signal output.
TA1310ANG 2005-09-20 7 pin no. symbol function interface i / o signal 26 v agc filter the terminal to be connected a capacitor for automatic gain control of vertical ramp signal. 27 v ramp the terminal to be connected a capacitor to generate vertical ramp signal. 28 eht v the terminal for the vertical eht input. 29 scl the terminal for input of i 2 c bus clock. 30 sda the terminal for input / output of i 2 c bus data.
TA1310ANG 2005-09-20 8 pin no. symbol function interface i / o signal 31 gnd ii the terminal for the gnd of def / i 2 c / ew. D 32 hd out the terminal for the hd pulse. the suspension period of the black peak stretching is extended by inputting the external pulse. 33 vd out the terminal for the vd pulse. 34 fbp in the terminal for the flyback pulse to control h-blk and h-afc. 35 h out the terminal for the horizontal output.
TA1310ANG 2005-09-20 9 pin no. symbol function interface i / o signal 36 sync out the terminal for output of the synchronizing signal that was separated in the synchronous separation circuit. this terminal is of the open collector system. connect the pull-up resistor. 37 def v cc the terminal for v cc supply 9 v of def. (caution) be sure to design the power supply so that when the power is off, def v cc is below 1.9 v. 38 y / sync in the terminal for input of the synchronous separation circuit. input via clamp capacitor. 39 v sep filter the terminal to be connected a capacitor for the vertical synchronous separation circuit. 40 afc i filter connect the filter for horizontal afc i detection. the frequency of the horizontal output varies depending on the voltage at this pin.
TA1310ANG 2005-09-20 10 pin no. symbol function interface i / o signal 41 32 fh vco connect the ceramic oscillator for horizontal oscillation. the oscillator to be used is csbla503keczf30, made by murata electronics. 42 h correction the terminal to correct distortion of picture in the case of high-tension fluctuation. input the ac component of high tension fluctuation. this terminal can be inputted vk output (pin 12). 43 dl out the terminal outputs delayed y signal. input this signal to y in (pin 54) via a capacitor. 44 gnd iii the terminal for gnd of def linear / chroma circuits. D 45 chroma in the terminal for the chroma input. dc : 1.77 v ac : burst 286 mv p-p
TA1310ANG 2005-09-20 11 pin no. symbol function interface i / o signal 46 apc the terminal to be connected apc filter. the oscillation frequency of vcxo varies depending on the voltage at this pin. 47 b-y out the terminal outputs the b-y signal. dc : 2.2 v ac : 300m v p-p (rainbow color bar) 48 r-y out the terminal outputs the r-y signal. dc : 2.2 v ac : 300 mv p-p (rainbow color bar) 49 x?tal the terminal to be connected with a 3.579545 mhz x?tal oscillator. the oscillated frequency, f 0 , is controlled by series capacitors, and frequency adjustment range can be expanded by putting capacitors in parallel. 50 cw out the terminal for cw output generated in vcxo.
TA1310ANG 2005-09-20 12 pin no. symbol function interface i / o signal 51 v cc (5 v) the terminal for v cc supply 5 v. D 52 53 r-y in b-y in the terminals for the r-y / b-y signal input. input signals clamped by coupling capacitors. (*) : even when not in use, connect to gnd with a coupling capacitor. 54 y in the terminal for the y signal input. input the y signals clamped by coupling capacitors. 55 black peak det the terminal to be connected the filter controlling the black stretching gain of the black stretching circuit. the black stretching gain varies depending on the voltage at this pin. 56 dc restoration corr. the terminal to be connected capacitor for dc restoration correction control. open this pin if not use the dc restoration correction.
TA1310ANG 2005-09-20 13 bus control map slave address : 88h (write) / 89h (read) d 7 d 6 d 5 d 4 d 3 d 2 d 1 d 0 00 abl point uni-color 01 test brightness 02 y-mute color 03 tint tof-sw 04 sharpness abl gain 05 rgb brightness vertical position uv-sw 06 g drive gain v-agc 07 b drive gain vsm-g 08 r cut off 09 g cut off 0a b cut off 0b horizontal position b. s. point 0c vertical size zoom service 0d horizontal size hv-fix 0e e / w parabola v-s correction 0f v-lin correction sub contrast 10 e / w trapezium e / w corner 11 col- acb mode v-blk start phase 12 ry / gy phase / gain dl- mode v-blk stop phase 13 vertical centering rgb- 14 v centering dac sw base band tint read mode pores y-in rgb-out h-out v-out ew-out color ed2 the preset value for d 7 is 1. the preset values for d 0 to d 6 are 0.
TA1310ANG 2005-09-20 14 bus control characteristics by function write mode item data no. of bits preset value unicolor (uni-color) / rgb contrast 000000 ; ? 18db 111111 ; 0 db 6 ? 18 db (000000) brightness (sub-brightness included) (brightness) 0000000 ; ? 40 (ire) 1111111 ; +40 (ire) 7 ? 40 (ire) (0000000) color (sub-color included) (color) 0000000 ; ? 1111111 ; +6 db 7 ? (0000000) tint (sub-tint included) (tint) 0000000 ; ? 32 1111111 ; +32 7 0 (1000000) picture sharpness (picture-sharpness) 000000 ; ? 6 db 111111 ; +12 db (at 2.4 mhz) 6 +6 db (100000) sub contrast (sub-contrast) 0000 ; ? 3 db 1111 ; +3 db 4 ? 3 db (0000) dc output for vertical centering (vertical centering) 0000000 ; 1.0 v 111111 ; 4.0 v 7 center (1000000) external / internal color difference switching (uv-sw) 0 ; int 1 ; ext 1 int (0) rgb brightness (rgb-brightness) 0000 ; ? 20 (ire) 1111 ; +20 (ire) 4 center (1000) rgb cut off (rgb-cutoff) 00000000 ; ? 0.5 v 11111111 ; +0.5 v ? at bus control ? 00000000 ; 0.5 vp-p 11111111 ; 1.5 vp-p ? ik input amplitude in acb mode ? 83 ? 0.5 v (00000000) g / b drive gain (gb-drive gain) 0000000 ; ? 5 db 1111111 ; +3 db 72 center (1000000) vsm gain (vsm-g) 0 ; on 1 ; off 1 on (0) zoom mode switching (zoom) 0 ; normal 1 ; zoom 1 normal (0) black stretching start point (b.s. point) 000; min / black stretch off (black correction on) 111; max / 50 (ire) 3 black stretch off (000) abl detection voltage (abl point) 00 ; min 11 ; max 2 center (10) abl sensitivity(abl gain) 00 ; min 11 ; max 2 min (00) horizontal position (horizontal position) 00000 ; ? 3 s (left shift) 11111 ; +3 s 5 center (10000) horizontal and vertical frequency fixed mode (hv-fix) 00 / 01 ; normal 10 ; afc off (free run) & v = 263 (h) 11 ; afc off (free run) & v = 262.5 (h) 2 normal (00) vertical pulse phase (vertical-pulse phase) 000 ; 0h 111 ; 7h delay 3 0 (h) (000) service mode (service) 0 ; normal 1 ; service mode(v-stop) 1 normal (0) test mode (test mode) 1 ; normal 0 ; rgb blk off 1 normal (1)
TA1310ANG 2005-09-20 15 item data no. of bits preset value tof switching (tof-sw) 0 ; bpf mode 1; tof mode 1 bpf (0) v-agc time constant (v-agc) 0 ; fast 1 ; slow 1 fast (0) vertical amplitude (vertical size) 000000 ; min 111111 ; max 6 center (100000) vertical linearity correction (v-lin correction) 0000 ; lower stretch 1111 ; upper stretch 4 center (1000) vertical s correction (v-s correction) 000 ; reverse s max 111 ; s max 3 (000) horizontal amplitude (horizontal size) 000000 ; max 111111 ; min 6 center (100000) e / w parabola correction (e / w parabola) 00000 ; min 11111 ; max 5 center (10000) e/w corner correction (e / w corner) 0000 ; vertical 1111 ; vertical expansion compression 4 (0000) e / w trapezium correction (e / w trapezium) 0000 ; expansion 1111 ; expansion upward downward 4 center (1000) color correction (col- ) 0 ; on 1 ; off 1 off (1) y mute (y mute) 0 ; off 1 ; on 1 on (1) rgb correction (rgb- ) 0 ; off 1 ; on 1 off (0) dl mode switching (dl-mode) 0 ; through 1 ; on 1 through (0) acb mode switching (acb-mode) 00 ; acb off & s / h low 01 ; acb off (bus control) 10 ; acb on & i-det normal 11 ; acb on & i-det3 2 s / h low (00) relative phase amplitude switching (ry / gy phase / gain) 00 ; ntsc std 01 ; dvd std 10 ; ntsc (t) 11; a-tv std 2 tsb std (10) vertical blanking start phase (v-blk start phase) 00000 ; vth (hi) 11111 ; vth (lo) 5 (00000) vertical blanking stop phase (v-blk stop phase) 00000 ; vth (lo) 11111 ; vth (hi) 5 (00000) base band tint 0000000 ; +60 deg 1111111 ; ? 40 deg *1000000 (center) :+6 deg 7 center (1000000) v centeringdac output switch(v centering dac sw) 0 ; interlocking e / w trapezium correction (e / w trapezium correction : 12.5%) 1; non-interlocking e / w trapezium correction (e / w trapezium correction : 4.5%) 1 non- interlocking (1) read mode slave address : 89h d 7 d 6 d 5 d 4 d 3 d 2 d 1 d 0 ponres y-in rgb-out h-out v-out ew-out color ed2
TA1310ANG 2005-09-20 16 item data power on reset (pores) 0 ; normal 1 ; resister preset color mode (color) 0 ; b / w 1 ; ntsc self diagnosis result output (rgb-out / y-in / h-out / v-out / e-w out / uv-in) 0 ; ng 1 ; ok ed2 indentification 0 ; non-ed2 1 ; ed2 i 2 c bus communications, receive method start and stop condition bit transfer acknowledgement when data are received, the master transmitter changes to a receiver immediately after the first acknowledgement and the slave receiver changes to a transmitter. the master always creates the stop condition.
TA1310ANG 2005-09-20 17 in the above method, the subaddresses are automatically incremented from the specified subaddress and data are set. i 2 c bus conditions characteristics symbol min typ. max unit low level input voltage v il 0 ? 1.5 v high level input voltage v ih 3.0 ? vcc v low level output voltage at 3 ma sink current v ol1 0 ? 0.4 v input current each i/o pin with an input voltage between 0.1 vdd and 0.9 vdd i i ? 10 ? 10 a capacitance for each i/o pin c i ? ? 10 pf scl clock frequency f scl 0 ? 100 khz hold time start condition t hd;sta 4.0 ? ? s low period of scl clock t low 4.7 ? ? s high period of scl clock t high 4.0 ? ? s set-up time for a repeated start condition t su;sta 4.7 ? ? s data hold time t hd;dat 350 ? ? ns data set-up time t su;dat 250 ? ? ns set-up time for stop condition t su;sto 4.0 ? ? s bus free time between a stop and start condition t buf 4.7 ? ? s
TA1310ANG 2005-09-20 18 maximum ratings (ta = 25c) characteristics symbol rating unit power supply voltage (5 v / 9 v ) v ccmax 7 / 12 v input pin voltage (5 v / 9 v ) v in gnd ? 0.3~v cc + 0.3 v power dissipation (note) p d 1920 mw power dissipation reduction rate 1 / qja 15.4 mw / c operating temperature t opr ? 20~65 c storage temperature t stg ? 55~150 c note: see the figure below. fig. temperature reduction curve for power dissipation
TA1310ANG 2005-09-20 19 operating condition item data and conditions min typ. max unit pin 16, pin 37 8.7 9.0 9.3 power supply voltage pin 51 4.8 5.0 5.2 v pin 54 y input signal level 100% white, including synchronization 0.9 1.0 1.1 v p-p tof : off, burst level 100 300 400 pin 45 chroma input signal level tof : on, burst level 100 300 400 mv p-p pin 38 sync signal input level 100% white, including synchronization 0.9 1.0 1.1 v p-p note: be sure to design the power supply so that when the power is off, def v cc is below 1.9 v. electrical characteristics (v cc = 5 v / 9 v, def v cc = 9 v, ta = 25c 3c, unless otherwise specified) current dissipation current dissipation pin name symbol test cir- cuit min typ. max unit remarks 5 v v cc i cc1 D 32.50 38.34 45.30 ma D 9 v v cc i cc2 D 48.54 57.44 67.78 ma D def v cc i cc3 D 19.70 23.31 27.50 ma D
TA1310ANG 2005-09-20 20 dc characteristics pin voltage pin pin name sym- bol min typ. max unit pin pin name sym- bol min typ. max unit 1 vsm out v 1 4.10 4.30 4.50 29 scl v 29 4.90 5.00 D 2 gnd1 v 2 D 0.00 D 30 sda v 30 4.90 5.00 D 3 r in v 3 3.40 3.70 4.00 31 d. gnd gnd2 v 31 D 0.00 D 4 g in v 4 3.40 3.70 4.00 32 hd out v 32 0.15 0.20 0.25 5 b in v 5 3.40 3.70 4.00 33 vd out v 33 4.90 5.00 5.10 6 ys / ym in v 6 D 0.00 0.20 34 fbp in v 34 1.30 1.60 1.90 7 osd r in v 7 5.00 5.50 6.00 35 h out v 35 1.50 1.80 2.10 8 osd g in v 8 5.00 5.50 6.00 36 sync out v 36 8.80 9.00 D 9 osd b in v 9 5.00 5.50 6.00 37 def v cc v 37 D 9.00 D 10 osd ys in v 10 D 0.00 0.20 38 sync in v 38 2.80 3.00 3.20 11 abl in v 11 5.70 6.00 6.30 39 v sep v 39 6.00 6.40 6.80 12 vk out v 12 4.85 5.00 D 40 afc1 v 40 7.20 7.50 7.80 13 r out v 13 1.20 1.60 2.00 41 32fh vco v 41 5.70 5.90 6.10 14 g out v 14 1.20 1.60 2.00 42 curve correction v 42 4.60 4.80 5.00 15 b out v 15 1.20 1.60 2.00 43 dl out v 43 0.30 0.80 1.00 16 v cc (9v) v 16 D 9.00 D 44 gnd3 v 44 D 0.00 D 17 r filter v 17 2.1 2.5 2.9 45 chroma in v 45 1.59 1.77 1.95 18 g filter v 18 2.1 2.5 2.9 46 apc v 46 1.39 1.72 2.05 19 b filter v 19 2.1 2.5 2.9 47 b-y out v 47 1.91 2.22 2.53 20 ik in v 20 0.95 1.00 1.05 48 r-y out v 48 1.91 2.22 2.53 21 v centering v 21 2.20 2.30 2.40 49 x?tal v 49 3.80 4.00 4.20 22 ew fb v 22 3.90 4.30 4.70 50 cw out v 50 3.00 3.50 4.00 23 ew out v 23 0.60 0.70 0.80 51 v cc (5v) v 51 D 5.00 D 24 v out v 24 0.60 0.70 0.80 52 r-y in v 52 2.85 3.00 3.15 25 v nfb v 25 4.60 5.00 5.40 53 b-y in v 53 2.85 3.00 3.15 26 v agc v 26 1.80 2.00 2.20 54 y in v 54 3.50 3.65 3.90 27 v ramp v 27 4.00 4.20 4.40 55 black peak detect v 55 3.20 3.70 3.80 28 eht, v i n v 28 4.80 4.90 5.00 v 56 dc restoration correction v 56 2.90 3.00 3.10 v
TA1310ANG 2005-09-20 21 ac characteristics video stage characteristic symbol test cir- cuit test condition min typ. max unit #54 voltage (y input pedestal clamp voltage) v54 D (note p1) 3.5 3.65 3.9 v #55 voltage v55 D (note p2) 3.2 3.7 3.8 v #56 voltage v56 D (note p3) 2.93 3.03 3.13 v #1 voltage v1 D (note p4) 4.1 4.25 4.4 v ? vpc0 D y input pedestal clamp error voltage ? vpc1 D (note p5) ? 7 0 +7 mv tcl1 D 2.8 2.9 3.0 y input pedestal clamp pulse phase tcl2 D (note p6) 4.8 4.9 5.0 s y input dynamic range dr54 D (note p7) 1.0 1.25 1.4 v p-p #56 output impedance z56 D (note p8) 4 5 6 k ? black stretching amplifier maximum gain gbs D (note p9) 1.3 1.4 1.5 (times) black level compensation blc D (note p10) 6 7 8 (ire) black peak detection level ? vbp D (note p11) ? 15 0 +15 mv pb001 D 34 36 42 black stretching start point pb111 D (note p12) 51 54 61 (ire) gdtc D 1.45 1.55 1.65 dc restoration rate compensation amp. gain gdtr D (note p13) 1.3 1.4 1.5 (times) scdc D self-diagnosis y in scac D (note p14) D ok D D y mute gym D (note p15) ? ? 50 ? 45 db sharpness peak frequency fap D (note p16) 3.35 4.2 5.05 mhz gmax D 8 11 14 sharpness control range gmin D (note p17) ? 12 ? 7.5 ? 3 db sharpness control center characteristics gcen D (note p18) 2 5 8 db between y in and r out delay time ty D (note p19) 120 150 180 ns vsm peak frequency fvsm D (note p20) 3 4 5 mhz gvsm0 D 9 11 13 vsm gain gvsm1 D (note p21) ? ? 30 ? 20 db vvm10 D 0.7 0.8 0.9 vsm muting threshold voltage vvm6 D (note p22) 2.15 2.25 2.35 v thm1 D thm2 D thm3 D vsm high speed muting response time thm4 D (note p23) 0 +50 +100 ns tvm24 D 64 80 94 tvmfp D 59 73 87 vsm phase tvm2t D (note p24) 64 80 94 ns note 1: for testng, see the picture sharpness test circuit diagrams. note 2: ensure the composite signal is always input to pin 38 (sync in).
TA1310ANG 2005-09-20 22 chroma stage characteristic symbol test cir- cuit test condition min typ. max unit va10 D 93.5 110 127 va30 D 272 320 368 va300 D 276 325 374 va600 D 276 325 374 mv p-p acc characteristic a D (note c1) 0.80 1.00 1.10 D vb D 276 325 374 color difference output level vr D (note c2) 276 325 374 mv p-p color difference output relative amplitude vrb D (note c3) 0.90 1.00 1.10 D bcnt D 3.0 6.0 11.0 color difference output demodulation angle rcnt D (note c4) 91.0 94.0 99.0 color difference output relative phase rb D (note c5) 85.0 89.0 91.0 bmax D ? 35.0 ? 40.0 ? 46.5 bmin D 35.0 38.0 44.0 rmax D ? 35.0 ? 40.0 ? 46.5 color difference output tint adjustment characteristics rmin D (note c6) 35.0 38.0 46.0 bvp D 5.00 8.00 11.00 rvp D 5.00 8.00 11.00 bvn D ? 11.00 ? 8.00 ? 5.00 supply voltage dependence of color difference output rvn D (note c7) ? 11.00 ? 8.00 ? 5.00 % vcb D 3.00 4.10 6.00 identification sensitivity vbc D (note c8) 3.00 4.40 6.00 mv p-p bcb D D 0 D bus read identification bbc D (note c9) D 1 D D vbh D D 0 4.00 color difference output voltage difference in 1h period vrh D (note c10) D 0 4.00 mv p-p vbg D D 0 2.00 color difference output voltage difference every 1h period vrg D (note c11) D 0 2.00 mv p-p vb D 1.91 2.22 2.53 color difference output dc voltage vr D (note c12) 1.91 2.22 2.53 v difference between dc voltage axes of color difference output vrb D (note c13) ? 0.1 0 +0.1 v x'tal free-run frequency xf D (note c14) 3.579345 3.579545 3.579745 mhz apc frequency control sensitivity f D (note c15) 0.45 0.90 1.20 hz mv fh+ D +250 +500 +2000 fh ? D ? 250 ? 500 ? 2000 fp+ D +250 +500 +2000 apc pull-in / hold range fp ? D (note c16) ? 250 ? 500 ? 2000 hz vbno D D 2.0 4.00 residual carrier level vrno D (note c17) D 2.0 4.00 mv p-p vbhn D D 2.0 4.0 residual higher harmonics level vrhn D (note c18) D 2.0 4.0 mv p-p
TA1310ANG 2005-09-20 23 characteristic symbol test cir- cuit test condition min typ. max unit gbl D 17.5 21.0 24.5 gbh D 21.5 25.0 28.5 gtl D 14.0 17.5 21.0 tof-bpf characteristic gth D (note c19) 21.5 25.0 28.5 db cw output amplitude vcw D (note c20) 420 700 980 mv p-p color difference stage characteristic symbol test cir- cuit test condition min typ. max unit vry D 2.85 3.00 3.15 color difference input clamp voltage vby D (note a1) 2.85 3.00 3.15 v dlry D 115 150 185 color difference input / output delay time dlby D (note a2) 115 150 185 ns ur D ? 17 ? 19 ? 21 unicolor adjustment characteristics ub D (note a3) ? 17 ? 19 ? 21 db crmax D 6.5 8.0 9.5 crmin D D D ? 20 cbmax D 6.5 8.0 9.5 color adjustment characteristics cbmin D (note a4) D D ? 20 db vrho D ? 5.5 ? 6 ? 6.5 vgho D ? 5.5 ? 6 ? 6.5 rgb output half-tone characteristics vbho D (note a5) ? 5.5 ? 6 ? 6.5 db vrstd D 0.64 1.13 0.87 vgstd D 0.39 0.50 0.53 vbstd D 1.14 1.35 1.56 vrdvd D 0.90 1.07 1.23 vgdvd D 0.51 0.61 0.70 vbdvd D 1.14 1.35 1.56 vrtsb D 0.78 0.92 1.06 vgtsb D 0.34 0.41 0.47 vbtsb D 1.14 1.35 1.56 vrdtv D 0.98 1.13 1.34 vgdtv D 0.34 0.41 0.47 rgb output amplitude vbdtv D (note a6) 1.14 1.35 1.56 v p-p vrbstd D 0.78 0.87 0.96 vgbstd D 0.31 0.35 0.39 vrbdvd D 0.72 0.80 0.88 vgbdvd D 0.37 0.42 0.47 vrbtsb D 0.62 0.69 0.76 vgbtsb D 0.25 0.28 0.31 vrbdtv D 0.78 0.87 0.96 rgb output relative amplitude vgbdtv D (note a7) 0.24 0.27 0.30 D
TA1310ANG 2005-09-20 24 characteristic symbol test cir- cuit test condition min typ. max unit rstd D 86.0 90 94 gstd D 232.0 236 240.0 bstd D ? 4 0 4 rdvd D 86.0 90 94.0 gdvd D 240 244 248 bdvd D ? 4 0 4 rtsb D 88.0 92 96.0 gtsb D 236.0 240 244.0 btsb D ? 4 0 4 rdtv D 86.0 90 94.0 gdtv D 240.0 244 248.0 rgb output demodulation angle bdtv D (note a8) ? 4 0 4 rbstd D 92 96 100 gbstd D 236 240 244 rbdvd D 88 92 96 gbdvd D 240 244 248 rbtsb D 90 94 98 gbtsb D 235 239 243 rbdtv D 103 107 111 rgb output relative phase gbdtv D (note a9) 239 243 247 xeir D D ? 50 ? 45 xeig D D ? 50 ? 45 color difference ext int crosstalk xeib D (note a10) D ? 50 ? 45 db xier D D ? 50 ? 45 xieg D D ? 50 ? 45 color difference int ext crosstalk xieb D (note a11) D ? 50 ? 45 db color characteristic c sp D (note a12) 1.80 2.07 2.20 v y stage characteristic symbol test cir- cuit test condition min typ. max unit gyoff D ? 0.30 ? 0.20 0.01 sync input~dl output ac gain gyon D (note y1) ? 0.45 ? 0.35 0.01 db gfyoff ? 0.20 0.00 0.20 sync input~dl output frequency gain gfyon D (note y2) ? 3.00 ? 1.60 0.20 db vdoff 1.30 1.60 D sync input~dl output dynamic range vdon D (note y3) 1.30 1.60 D v p-p sync input~dl output transfer characteristics tydl D (note y4) 300 350 410 ns
TA1310ANG 2005-09-20 25 text stage characteristic symbol test cir- cuit test condition min typ. max unit gr D 3.2 3.80 4.55 gg D 3.2 3.80 4.55 ac gain gb D (note t1) 3.2 3.80 4.55 times gfr D D ? 3.0 ? 6.0 gfg D D ? 3.0 ? 6.0 frequency characteristics gfb D (note t2) D ? 3.0 ? 6.0 db vumax D 0.59 0.74 0.88 v p-p vucnt D 0.31 0.39 0.47 vumin D 0.06 0.08 0.10 unicolor adjustment characteristic ? vu D (note t3) 17 18.5 20 db vbrmax D 4.3 4.6 4.9 vbrcnt D 3.3 3.6 3.9 brightness adjustment characteristic vbrmin D (note t4) 2.3 2.6 2.9 v brightness control sensitivity gbr D (note t5) 14.2 16.3 18.7 mv white peak slice level vwps D (note t6) 2.600 2.825 3.100 v p-p vbpsr D vbpsg D black peak slice level vbpsb D (note t7) 1.95 2.15 2.35 v tdcr D tdcg D dc restoration tdcb D (note t8) D 0.0 50 mv n13 D n14 D rgb output s / n n15 D (note t9) D ? 50 ? 45 db i#13 D i#14 D rgb output emitter-follower drive current i#15 D (note t10) 1.1 1.5 1.9 ma ? t13 D ? t14 D rgb output temperature coefficient ? t15 D (note t11) ? 2.0 0.0 2.0 mv / c half-tone characteristics ght D (note t12) 0.45 0.5 0.55 times half-tone on voltage vht D (note t13) 0.6 0.8 1.0 v vvr D vvg D v-blk pulse output level vvb D (note t14) 0.5 1.0 1.5 v vhr D vhg D h-blk pulse output level vhb D (note t15) 0.5 1.0 1.5 v tdonr D tdong D tdonb D D 0.0 0.3 tdoffr D tdoffg D blanking pulse delay time tdoffb D (note t16) D 0.0 0.3 s
TA1310ANG 2005-09-20 26 characteristic symbol test cir- cuit test condition min typ. max unit ? vsu+ D 1.8 2.3 2.8 sub-contrast control range ? vsu ? D (note t17) ? 3.0 ? 3.5 ? 4.0 db v#13 D v#14 D rgb output voltage v#15 D (note t18) 2.35 2.6 2.85 v cut+r D cut+g D cut+b D 0.45 0.5 0.55 cut ? r D cut ? g D cut-off voltage control range cut ? b D (note t19) ? 0.45 ? 0.5 ? 0.55 v drg+ D 2.35 2.85 3.35 drg ? D ? 4.25 ? 5.0 ? 5.75 drb+ D 2.35 2.85 3.35 drive adjustment range drb ? D (note t20) ? 4.25 ? 5.0 ? 5.75 db #11 input impedance zin11 D (note t21) 24 30 36 k ? acl1 D ? 1.5 ? 3.5 ? 5.5 acl characteristic acl2 D (note t22) ? 12 ? 15 ? 18 db ablp1 D 0.04 ? 0.01 ? 0.06 ablp2 D ? 0.09 ? 0.14 ? 0.19 ablp3 D ? 0.24 ? 0.29 ? 0.34 abl point ablp4 D (note t23) ? 0.37 ? 0.42 ? 0.47 v ablg1 D ? 0.119 ? 0.095 ? 0.072 ablg2 D ? 0.400 ? 0.320 ? 0.240 ablg3 D ? 0.750 ? 0.600 ? 0.450 abl gain ablg4 D (note t24) ? 0.925 ? 0.740 ? 0.555 v blk off mode blk D (note t25) D oper- ating D D gtxr D gtxg D analog rgb gain gtxb D (note t26) 4.2 5.0 6.0 times gftxr D gftxg D analog rgb frequency characteristics gftxb D (note t27) D ? 1.0 ? 3.0 db gr13 D gr14 D analog rgb input dynamic lange gr15 D (note t28) 0.47 0.55 D v p-p vtxmaxr D vtxmaxg D analog rgb white peak slice level vtxmaxb D (note t29) 3.5 3.8 4.1 v p-p vtxminr D vtxming D analog rgb black peak limiter level vtxminb D (note t30) 1.9 2.1 2.3 v
TA1310ANG 2005-09-20 27 characteristic symbol test cir- cuit test condition min typ. max unit vutxr1 D vutxg1 D vutxb1 D 0.85 1.0 1.2 vutxr2 D vutxg2 D vutxb2 D 0.50 0.59 0.71 vutxr3 D vutxg3 D vutxb3 D 0.11 0.13 0.15 v p-p ? vutxr D ? vutxg D analog rgb contrast adjustment characteristics ? vutxb D (note t31) 17.0 18.5 20 db vbrtx1r D vbrtx1g D vbrtx1b D 3.3 3.6 3.9 vbrtx2r D vbrtx2g D vbrtx2b D 2.8 3.1 3.4 vbrtx3r D vbrtx3g D analog rgb brightness adjustment characteristics vbrtx3b D (note t32) 2.2 2.5 2.8 v analog rgb mode on voltage vtxon D (note t33) 2.0 2.25 2.5 v rysr D rysg D rysb D D 25 100 tprysr D tprysg D tprysb D D 30 100 ? tprys D D 0 20 fysr D fysg D fysb D D 10 100 tpfysr D tpfysg D tpfysb D D 25 100 analog rgb mode transfer characteristics ? tpfys D (note t34) D 0 20 ns vv ar D vv ag D crosstalk from video to analog rgb vv ab D (note t35) D ? 50 ? 45 db va vr D va vg D crosstalk from analog rgb to video va vb D (note t36) D ? 55 ? 50 db
TA1310ANG 2005-09-20 28 characteristic symbol test cir- cuit test condition min typ. max unit gosdr D gosdg D analog osd gain gosdb D (note t37) 1.8 2.0 2.2 (times) gfosdr D gfosdg D analog osd frequency characteristics gfosdb D (note t38) D ? 1.0 ? 3.0 db vosd1r D vosd1g D vosd1b D 2.25 2.5 2.75 vosd2r D vosd2g D vosd2b D 1.98 2.20 2.42 vosd3r D vosd3g D analog osd output level vosd3b D (note t39) 5.0 5.5 6.0 v analog osd mode on voltage vosdon D (note t40) 2.00 2.25 2.50 v rosdysr D rosdysg D rosdysb D D 20 100 tprosdysr D tprosdysg D tprosdysb D D 30 100 ? tprosdys D D 0 20 fosdysr D fosdysg D fosdysb D D 15 100 tpfosdysr D tpfosdysg D tpfosdysb D D 30 100 analog osd mode transfer characteristic ? tpfosdys D (note t41) D 0 20 ns rgb output self-diagnosis scrgb D (note t42) D oper- ating D D acbr D D 1 D acbg D D 2 D acbb D D 3 D (h) vacbr D 0.200 0.250 0.300 vacbg D 0.200 0.250 0.300 acb input pulse phase, amplitude vacbb D (note t43) 0.200 0.250 0.300 v p-p
TA1310ANG 2005-09-20 29 characteristic symbol test cir- cuit test condition min typ. max unit i17a D 0.08 0.1 0.125 i17b D 0.08 0.1 0.125 i17c D 0.8 1.0 1.3 i17d D 2.0 2.5 3.2 i18a D 0.08 0.1 0.125 i18b D 0.08 0.1 0.125 i18c D 0.8 1.0 1.3 i18d D 2.0 2.5 3.2 i19a D 0.08 0.1 0.125 i19b D 0.08 0.1 0.125 i19c D 0.8 1.0 1.3 acb clamp current i19d D (note t44) 2.0 2.5 3.2 ma ikr D 0.8 1.0 1.2 ikg D 0.8 1.0 1.2 ik input amplitude ikb D (note t45) 0.8 1.0 1.2 v p-p 1r D 40 50 60 2r D 60 70 80 (ire) ? 1r D 0.75 1.5 2.25 ? 2r D ? 0.75 0.0 0.75 ? 3r D ? 2.55 ? 3.3 ? 4.05 db 1g D 40 50 60 2g D 60 70 80 (ire) ? 1g D 0.75 1.5 2.25 ? 2g D ? 0.75 0.0 0.75 ? 3g D ? 2.55 ? 3.3 ? 4.05 db 1b D 40 50 60 2b D 60 70 80 (ire) ? 1b D 0.75 1.5 2.25 ? 2b D ? 0.75 0.0 0.75 rgb correction characteristics ? 3b D (note t46) ? 2.55 ? 3.3 ? 4.05 db vka D 1.90 2.00 2.10 vk1 D 25.0 35.00 45.0 v p-p vk output characteristic vk2 D (note t47) 60.0 70.00 80.0 (ire) acbpr D D D D D acb protector circuit operation check 1 acbpg D (note t48) D D D D acbbrar D D D D D acb protector circuit operation check 2 acbbrag D (note t49) D D D D acb protector circuit operation check 3 acbbrlo D (note t50) D D D D
TA1310ANG 2005-09-20 30 characteristic symbol test cir- cuit test condition min typ. max unit ang rmin D 47.0 53.0 59.0 ang bmin D 47.0 53.0 59.0 ang rmax D ? 51.0 ? 45.0 ? 39.0 base band tint adjustment characteristics ang bmax D (note t51) ? 51.0 ? 45.0 ? 39.0 base band tint adjustment position bus bo D (note t52) c2 c6 ca hex
TA1310ANG 2005-09-20 31 deflection stage characteristic symbol test cir- cuit test condition min typ. max unit sync. separation input sensitivity current i in38 D (note d1) 12 20 30 a v separation filter pin source current i out39 D (note d2) 3.2 4.2 5.2 a v separation level v sep D (note d3) 5.0 5.5 6.0 v i det D 210 300 420 a h afc phase detection current ratio ? i det D (note d4) ? 5 0 +5 % phase detection stop period t co40 D (note d5) D 262 10 D (h) 32* f h vco oscillation start voltage v vco D (note d6) 3.7 4.0 4.3 v v hon35 D 4.7 5.0 5.3 v v bus hon D D 1 D horizontal output start voltage v bus hoff D (note d7) D 0 D D horizontal output pulse duty t h35 D (note d8) 38.5 40.5 42.5 % phase detection stop mode f fr D (note d9) 15585 15734 15885 hz horizontal output free-run frequency f ho D (note d10) 15585 15734 15885 hz f hmin D 14700 15000 15300 horizontal oscillation frequency range f hmax D (note d11) 16500 16700 16900 hz horizontal oscillation control sensitivity h D (note d12) 250 300 350 hz / 0.1v v h35 D 4.2 4.6 5.0 horizontal output voltage v l35 D (note d13) D 0.15 0.3 v power supply voltage dependence of horizontal oscillation frequency ? f hv D (note d14) ? 20 0 +20 hz / v temperature dependence of horizontal oscillation frequency ? f ht D (note d15) D 60 70 hz s ph1 D 2.3 2.5 2.7 horizontal sync. phase s ph2 D (note d16) 0.2 0.3 0.4 s horizontal picture phase adjustment range ? h sft D (note d17) 5.5 6.0 6.5 s v hblk1 D 4.7 5.0 5.3 horizontal blanking pulse threshold v hblk2 D (note d18) 0.8 1.1 1.4 v curve correction characteristic ? h 42 D (note d19) 2.3 2.5 2.7 s hbp s D 7.5 8.0 8.5 h cycle black peak detection disable pulse hbp w D (note d20) 13.0 13.5 14.0 s external black peak detection disable pulse threshold bp v32 D (note d21) 0.9 1.1 1.3 v ~
TA1310ANG 2005-09-20 32 characteristic symbol test cir- cuit test condition min typ. max unit clamp pulse start phase cp s D (note d22) 2.8 3.0 3.2 s clamp pulse width cp w D (note d22) 5.6 5.8 6.0 s hd output start phase hd s D (note d23) 0.7 0.9 1.1 s hd output pulse width hd w D (note d23) 0.7 0.9 1.1 s hd output amplitude v hd D (note d23) 4.7 5.0 5.3 v gate pulse start phase gp s D (note d24) 2.7 2.9 3.1 s gate pulse width gp w D (note d24) 1.8 2.0 2.2 s gate pulse v mask period t co34 D (note d25) D 261 10 D (h) sync. out low level v sy D (note d26) 0.0 0.3 0.5 v vertical output oscillation start voltage v on D (note d27) 4.1 4.4 4.7 v vertical free-run frequency f vo D (note d28) D 53 D hz v vh D 4.9 5.2 5.5 vertical output voltage v vl D (note d29) D 0 0.3 v service mode switching vd no D (note d30) 3.1 3.4 3.7 v f pl D D 225 D vertical pull-in range f ph D (note d31) D 297 D (h) vertical frequency forced 263h f v1 D (note d32) D 263 D (h) vertical frequency forced 262.5h f v2 D (note d32) D 262.5 D (h) vertical blanking off mode v off D (note d33) D check D D t d D 44 46 48 vertical output pulse width t w D (note d34) D 8 D s vr s1 D vg s1 D rgb output vertical blanking pulse start phase vb s1 D (note d35) 44 46 48 s vr s2 D D 22 D vg s2 D D 22 D rgb output vertical blanking pulse stop phase vb s2 D (note d35) D 22 D (h) v cycle black peak detection disable pulse (normal) vbp normal D (note d36) D 257 28 D (h) v cycle black peak detection disable pulse (zoom) vbp zoom D (note d37) D 229 56 D (h) ~ ~ ~
TA1310ANG 2005-09-20 33 deflection correction stage characteristic symbol test cir- cuit test condition min typ. max unit vertical ramp amplitude v p27 D (note g1) 1.50 1.67 1.83 v p-p vertical amplification g v D (note g2) 22 25 28 db vertical amp maximum output voltage v h24 D (note g3) 2.5 3.0 3.5 v vertical amp minimum output voltage v l24 D (note g4) D 0.0 0.3 v vertical amp maximum output current i max1 D (note g5) 11 14 17 ma vertical nf sawtooth wave amplitude v p25 D (note g6) 1.50 1.67 1.83 v p-p vertical amplitude range v ph D (note g7) 36 40 44 % vertical linearity correction maximum value l v D (note g8) 12 15 18 % vertical s correction maximum value v s D (note g9) 20 25 30 % vertical nf center voltage v c D (note g10) 4.8 5.0 5.2 v vertical nf dc change v dc D (note g11) 100 120 140 mv vertical amplitude eht correction v eht D (note g12) 8 9 10 % e-w nf maximum dc value (picture width) v h22 D (note g13) 5.3 5.8 6.3 v e-w nf minimum dc value (picture width) v l22 D (note g14) 1.75 1.90 2.05 v e-w nf parabola maximum value (parabola) v pb D (note g15) 2.1 2.5 2.9 v p-p e-w nf corner correction (corner) v cr D (note g16) 1.0 1.2 1.4 v p-p parabola symmetry correction v tr D (note g17) 4.5 5.5 6.5 % e-w amp maximum output current i max2 D (note g18) 0.14 0.20 0.28 ma agc operating current 1 v agc0 D (note g19) 470 590 710 a agc operating current 2 v agc1 D (note g20) 100 130 160 a vertical guard voltage v vg D (note g21) 1.80 2.00 2.20 v v bus ew off D D 0 D e / w output self-diagnosis v bus ew on D (note g22) D 1 D D v bus v off D D 0 D v-out output self-diagnosis v bus v on D (note g23) D 1 D D vertical blanking check v blk1 v blk2 D (note g24) D check D D v 21l D 0.20 0.25 0.30 v 21m D 2.20 2.30 2.35 v centering dac output v 21h D (note g25) 4.20 4.30 4.35 v v nfb pin input current i 20 D (note g26) D 10 900 na
TA1310ANG 2005-09-20 34 test conditions video stage (test conditions v cc = 9 v / 5 v, ta = 25 3c) sw mode note item sw 54 sw 55 sw 56 measurement method p 1 #54 voltage (y input pedestal clamp voltage) c open open 1) set the bus control data to the preset value. 2) measure the #54 dc voltage v 54 . p 2 #55 voltage c open open 1) set the bus control data to the preset value. 2) measure the #55 dc voltage v 55 . p 3 #56 voltage c open open 1) set the bus control data to the preset value. 2) measure the #56 dc voltage v 56 . p 4 #1 voltage c open on 1) set the bus control data to the preset value. 2) measure the #1 dc voltage v 1 . p 5 y input pedestal clamp error voltage c open open 1) set the bus control data to the preset value. 2) set sw 54 to c (connect the y input to ac-gnd). 3) measure #56 with an oscilloscope as shown in the diagram and calculate ? vpc. 4) calculate the voltage differences ? vpc1 and ? vpc0 when the y mute is on (1) and off (0). note 1: when testing, see the picture sharpness test circuit diagram. first turn acb mode off (bus control). note 2: ensure the composite signal is always input to pin 38 (sync in).
TA1310ANG 2005-09-20 35 (test conditions v cc = 9 v / 5 v, ta = 25 3c) sw mode note item sw 54 sw 55 sw 56 measurement method p 6 y input pedestal clamp pulse phase b b open 1) set the bus control data to the preset value. 2) set sw 54 to b (connect v cc (5 v) to the y input via a 20-k ? resistor). 3) measure #54 and #40 with an oscilloscope as shown in the diagram. calculate tcl1 and tcl2. p 7 y input dynamic range c b open 1) set the bus control data to the preset value. 2) set sw 54 to c (connect the y input to ac-gnd). 3) set the unicolor to the center (100000), the brightness to the center (1000000), rgb cutoff to the center (10000000), the y mute to off (0), and connect an external power supply to #54. 4) increase the supply voltage from v 54 and measure #13 (r out ). 5) when the #13 voltage stops changing, substitute the supply voltage (v) in the formula below and calculate dr 54 . dr 54 = v ? v 54 note 1: when testing, see the picture sharpness test circuit diagram. first turn acb mode off (bus control). note 2: ensure the composite signal is always input to pin 38 (sync in).
TA1310ANG 2005-09-20 36 (test conditions v cc = 9 v / 5 v, ta = 25 3c) sw mode note item sw 54 sw 55 sw 56 measurement method p 8 #56 output impedance c b open 1) set the bus control data to the preset value. 2) set sw 54 to c (connect the y input to ac-gnd). 3) connect the external power supply to #56 via ammeter a as shown in the diagram below. 4) adjust the power supply until the ammeter reads 0 amperes. 5) measure the ammeter current i56 when the power supply is increased by 0.1 v. 6) calculate z56 from the following formula. z56 = 0.1 [v] i56 [a] p 9 black stretching amplifier maximum gain a b a open 1) set the bus control data to the preset value. 2) set the black stretch start point to 001, turn the y mute off (0), set sw 54 to a, and input a 500-khz sine wave to tp54a. 3) use #54 to adjust the signal amplitude to 0.1 v p-p . 4) set sw 55 to b (minimum gain) and measure the amplitude v a of #56. 5) set sw 55 to a (maximum gain) and measure the amplitude v b of #56. 6) calculate g bs from the following formula. g bs = v b v a note 1: when testing, see the picture sharpness test circuit diagram. first turn acb mode off (bus control). note 2: ensure the composite signal is always input to pin 38 (sync in).
TA1310ANG 2005-09-20 37 (test conditions v cc = 9 v / 5 v, ta = 25 3c) sw mode note item sw 54 sw 55 sw 56 measurement method p 10 black level compensation c a open 1) set the bus control data to the preset value. 2) set sw 54 to c (connect the y input to ac-gnd), set sw 55 to a (maximum gain), turn the y mute off (0), and turn the black level compensation on (set the black stretch start point to 000). 3) observe #56, measure ? v, and calculate the following formula. b lc [(ire)] = ( ? v [mv] (0.7 10 3 ) [mv]) 100 [(ire)] p 11 black peak detection level c c open 1) set the bus control data to the preset value. 2) turn the y mute off (0) and connect #54 to an external power supply (ps). 3) turn the black level correction on (set the black stretch start point to 000). 4) increase the ps from 3v and measure the voltage vbp of #56 where the dc level of the picture period of #55 shifts from high to low. 5) calculate ? vbp from the following formula. ? vbp = vbp ? v 56 note 1: when testing, see the picture sharpness test circuit diagram. first turn acb mode off (bus control). note 2: ensure the composite signal is always input to pin 38 (sync in).
TA1310ANG 2005-09-20 38 (test conditions v cc = 9 v / 5 v, ta = 25 3c) sw mode note item sw 54 sw 55 sw 56 measurement method p 12 black stretching start point c b a open 1) set the bus control data to the preset value. 2) set sw 54 to c (connect the y input to ac-gnd), set sw 55 to b (minimum gain), turn the y mute off (0), and set the black stretch start point to 001. 3) connect #54 to an external power supply (ps), increase the voltage from v 54 , and plot the resulting change in voltage s 1 of #56. 4) next, set sw 55 to a (maximum gain). then, increase the voltage from v 54 as in 3) above and plot the resulting change in voltage s 2 of #56. 5) now set the black stretch point to 111 and plot s 3 as in 3) above. 6) use the diagram below to calculate the intersection v b001 of s 1 and s 2 , and the intersection v b111 of s 1 and s 3 . use the following formals to calculate p b001 and p b111 , and calculate p b001 and p b111 from the formulas below. p b001 [(ire)] = ((v b001 [v] ? v 56 [v] 0.7 [v]) 100 [(ire)] p b111 [(ire)] = ((v b111 [v] ? v 56 [v] 0.7 [v]) 100 [(ire)] note 1: when testing, see the picture sharpness test circuit diagram. first turn acb mode off (bus control). note 2: ensure the composite signal is always input to pin 38 (sync in).
TA1310ANG 2005-09-20 39 (test conditions v cc = 9 v / 5 v, ta = 25 3c) sw mode note item sw 54 sw 55 sw 56 measurement method p 13 dc restoration rate compensation amp gain c b open on 1) set the bus control data to the preset value. 2) connect #54 to an external power supply (ps). 3) turn the y mute off (0), set the unicolor to the center (100000), set the brightness to the center (1000000), set rgb cutoff to the center (10000000), and observe #13 (r out ). 4) use unicolor to adjust the difference in the #13 picture period dc level to 0.7 v when the power supply is set to v 54 and v 54 +0.7 v. 5) applying v 54 +0.7 v to #54 as shown in the diagram below, calculate ? v 1 of #13, then calculate ? v 2 of #13 when sw 56 is on. 6) connect a 2-k ? resistor between #56 and c56 (1 f) and calculate ? v 3 of #13. 7) calculate gdtc and gdtr from the following formula. gdtc = (( ? v 2 [v] ?? v 1 [v]) + 0.7 [v]) 0.7 [v] gdtr = (( ? v 3 [v] ?? v 1 [v]) + 0.7 [v]) 0.7 [v] note 1: when testing, see the picture sharpness test circuit diagram. first turn acb mode off (bus control). note 2: ensure the composite signal is always input to pin 38 (sync in).
TA1310ANG 2005-09-20 40 (test conditions v cc = 9 v / 5 v, ta = 25 3c) sw mode note item sw 54 sw 55 sw 56 measurement method p 14 self-diagnosis y-in c a b open 1) set the bus control data to the preset value. 2) set sw 54 to c (connect the y input to ac-gnd), connect #54 to an external power supply (ps), and turn read mode on. 3) when the power supply is increased from v 54 to v 54 + 0.7 v, check that in read mode y-in changes from error to ok to error. scdc 4) next, set sw 54 to a and input a sine wave from tg-7 to tp54. apply a signal on #54 as shown in the diagram. check that there is no problem with the y in in read mode. scac p 15 y mute a b open 1) set the bus control data to the preset value. 2) input a 100-khz sine wave to tp54 and adjust #54 to 0.7 v p-p . 3) turn the y mute on (1) and measure the #56 amplitude vym1. 4) turn the y mute off (0) and measure the #56 amplitude vym0. 5) calculate the following formula. g ym [db] = 20 ? og (vym1 / vym0) note 1: when testing, see the picture sharpness test circuit diagram. first turn acb mode off (bus control). note 2: ensure the composite signal is always input to pin 38 (sync in).
TA1310ANG 2005-09-20 41 (test conditions v cc = 9 v / 5 v, ta = 25 3c) sw mode note item sw 54 sw 55 sw 56 measurement method p 16 sharpness peak frequency a b open 1) set the bus control data to the preset value. 2) set sw 54 to a and input a sweep signal to tp54. 3) set the amplitude of #54 to 20 mv p-p . 4) set the unicolor to the maximum (111111), set the brightness to the center (1000000), set the rgb cutoff to the center (10000000), turn the y mute off (0), turn test mode on (0), and set the picture sharpness to the maximum (111111). 5) connect an emitter-follower to tp13 (r out) and use a spectrum analyzer to observe tp13 (r out). 6) seek the peak point frequency f ap as shown in the diagram. note 1: when testing, see the picture sharpness test circuit diagram. first turn acb mode off (bus control). note 2: ensure the composite signal is always input to pin 38 (sync in).
TA1310ANG 2005-09-20 42 (test conditions v cc = 9 v / 5 v, ta = 25 3c) sw mode note item sw 54 sw 55 sw 56 measurement method p 17 sharpness control range a b open 1) set the bus control data to the preset value. 2) set sw 54 to a and input a sine wave to tp54a. 3) set the amplitude of #54 to 20 mv p-p . 4) set the unicolor to the maximum (111111), the brightness to the center (1000000), rgb cutoff to the center (10000000), and turn the y mute off (0). 5) set the picture sharpness to the maximum (111111). connect an emitter-follower to tp13 (r out). when the frequencies are 100 khz and 2.4 mhz, measure the respective v 100 and v 24 amplitudes. 6) next, set the picture sharpness to the minimum (000000). as in 5), when the frequencies are 100 khz and 2.4 mhz, measure the v 100 and v 24 amplitudes respectively. 7) calculate g max and g min from the following formula. g max , g min [db] = 20 ? og (v 24 v 100 ) p 18 sharpness control center characteristics a b open 1) repeat steps 1) to 4) of p 17 . 2) set the picture sharpness to the center (100000) 3) connect an emitter-follower to tp13 (r out). when the frequencies are 100 khz and 2.4 mhz, measure the v 100 and v 24 amplitudes respectively. 4) calculate g cen from the following formula. g cen [db] = 20 ? og (v 24 v 100 ) note 1: when testing, see the picture sharpness test circuit diagram. first turn acb mode off (bus control). note 2: ensure the composite signal is always input to pin 38 (sync in).
TA1310ANG 2005-09-20 43 (test conditions v cc = 9 v / 5 v, ta = 25 3c) sw mode note item sw 54 sw 55 sw 56 measurement method p 19 between y in and r out delay time a b open 1) set the bus control data to the preset value. 2) set sw 54 to a and input a 2t pulse (std) signal from tg-7 to tp54a. 3) set the unicolor to the maximum (111111), the brightness to the center (1000000), the rgb cutoff to the center (10000000), turn the y mute off (0), and set the picture sharpness to the center (100000). 4) connect an emitter-follower to tp13 (r out) to observe tp13 (r out). 5) calculate t y from the following diagram. note 1: when testing, see the picture sharpness test circuit diagram. first turn acb mode off (bus control). note 2: ensure the composite signal is always input to pin 38 (sync in).
TA1310ANG 2005-09-20 44 (test conditions v cc = 9 v / 5 v, ta = 25 3c) sw mode note item sw 54 sw 55 sw 56 measurement method p 20 vsm peak frequency a b open 1) set the bus control data to the preset value. 2) set sw 54 to a, turn the y mute off, and input a sweep signal to tp54. 3) set the #54 amplitude to 100 mv p-p . 4) observe tp1 (vsmout) with a spectrum analyzer and seek the peak point frequency fvsm. p 21 vsm gain a b open 1) set the bus control data to the preset value. 2) set sw 54 to a, turn the y mute off (0), and input the fvsm sine wave (see p 20 above) to tp54. 3) set the amplitude of #54 to 100 mv p-p. 4) when the vsm gain is on (0), measure the tp1 (vsmout) amplitude v vsm0 (v p-p ). 5) next, measure the tp1 (vsmout) amplitude v vsm1 (v p-p ) when the vsm gain is off (1). 6) calculate g vsm0 and g vsm1 by the following formulas. g vsm0 [db] = 20 ? og (v vsm0 0.1) g vsm1 [db] = 20 ? og (v vsm1 0.1) p 22 vsm muting threshold voltage a b open 1) repeat steps 1) to 3) of p 21 . 2) connect the external power supply (ps) to #10 and increase the voltage from 0.5 v. read the ps voltage v vm10 when the tp1 (vsmout) amplitude disappears, as shown in the following diagram. 3) set sw 6 to open, connect #6 to an external power supply, increase the voltage from 1.5 v. when the tp1 (vsmout) amplitude disappears as shown in the following diagram, read the ps voltage v vm6 . note 1: when testing, see the picture sharpness test circuit diagram. first turn acb mode off (bus control). note 2: ensure the composite signal is always input to pin 38 (sync in).
TA1310ANG 2005-09-20 45 (test conditions v cc = 9 v / 5 v, ta = 25 3c) sw mode note item sw 54 sw 55 sw 56 measurement method p 23 vsm high speed muting response time a b open 1) repeat steps 1) to 3) of p 21 above. 2) set sw 6 to open, input a pulse as shown below to #6 (ys / ym in), and measure the response times t hm1 and t hm2 at that input. 3) similarly, input the pulse to #10 (osd ys in) and measure the response times t hm3 and t hm4 at that input. note 1: when testing, see the picture sharpness test circuit diagram. first turn acb mode off (bus control). note 2: ensure the composite signal is always input to pin 38 (sync in).
TA1310ANG 2005-09-20 46 (test conditions v cc = 9 v / 5 v, ta = 25 3c) sw mode note item sw 54 sw 55 sw 56 measurement method p 24 vsm phase a b open 1) set the bus control data to the preset value. 2) input a signal like that shown in the diagram below to tp54, turn the y mute off (0), and adjust the amplitude of #54 to 0.7 v p-p . 3) set the unicolor to the maximum (111111), increase the picture sharpness from the minimum to a level where the r out waveform is not distorted. 4) measure the phase differences t vm24 , t vmfp , and t vm2t between tp1 (vsmout) and tp13 (r out) when the signal is an fvsm sine wave, a 2t pulse, and a 2.4-mhz signal, as shown in the diagram below. (to make a waveform at tp1, reverse the waveform at tp13 using an oscilloscope.) note 1: when testing, see the picture sharpness test circuit diagram. first turn acb mode off (bus control). note 2: ensure the composite signal is always input to pin 38 (sync in).
TA1310ANG 2005-09-20 47 chroma stage (#16 v cc = 9 v, #37 v cc = 9 v, #51 v cc = 5 v, ta = 25 3c) sw mode note item sw 45 sw 46 measurement method c 1 acc characteristics b on 1) input a rainbow signal (signal c-1) to the chroma input pin (tp45).burst : chroma = 1 : 1 2) when the chroma input amplitude levels are set to 10, 30, 300, and 600 mv p-p , measure the output amplitudes va10, va30, va300, and va600 of the r-y output pin (tp48). 3) calculate a = va30 / va600. c 2 color difference output level b on 1) input a rainbow signal (signal c-1) to the chroma input pin (tp45). burst : chroma = 300 mv p-p : 300 mv p-p 2) change the burst phase so that bar 2 of the b-y output pin (tp47) output waveform is the bottom peak and bar 7 is the top peak. 3) measure the amplitude (v b ) of the b-y output pin (tp47). 4) set the burst phase to 180. 5) measure the amplitude (v r ) of the r-y output pin (tp48) c 3 color difference output relative amplitude b on 1) calculate the relative amplitude v rb from the following formula using the values obtained in steps 3) and 5) of c 2 above. v rb = v r / v b c 4 color difference output demodulation angle b on 1) input a rainbow signal (c-1) to the chroma input pin (tp45). burst : chroma = 200 mv p-p : 200 mv p-p 2) calculate the demodulation angles b cnt and r cnt of the b-y output pin (tp47) and the r-y output pin (tp48) using the formulas and diagram below. c 5 color difference output relative phase b on calculate the relative phase rb from the following formula using the values obtained in c 4 above. rb = rcnt ? bcnt note 1: where the bus data are not specified, set the preset values. note 2: ensure the sync signal is always input to tp38 (sync in).
TA1310ANG 2005-09-20 48 (#16 v cc = 9 v, #37 v cc = 9 v, #51 v cc = 5 v, ta = 25 3c) sw mode note item sw 45 sw 46 measurement method c 6 color difference output tint adjustment characteristics b on 1) input a rainbow signal (signal c-1) to the chroma input pin (tp45). burst : chroma = 300 mv p-p : 300 mv p-p 2) measure the demodulation angles b? and r? in the outputs with the tint set to the maximum (subaddress (03h), data (fe)). calculate bmax and rmax by the following formulas. bmax = b? ? bcnt rmax = r? ? rcnt 3) measure the demodulation angles b? and r? in the outputs with the tint set to the minimum (subaddress (03h), data (00). calculate bmin and rmin by the following formulas bmin = b ? bcnt rmin = r ? rcnt c 7 supply voltage dependence of color difference output b on 1) input a rainbow signal (signal c-1) to the chroma input pin (tp45). burst : chroma = 300 mv p-p : 300 mv p-p 2) as in c 2 , measure the amplitudes ? vbp and ? vrp of the b-y output pin (tp47) and r-y output pin (tp48) when the 5-v v cc is set to 5 v + 0.3 v. calculate the amplitude ratios bvp and rvp when the 5-v v cc is set to 5 v. 100 vb vb vbp bvp ? = ? 100 vr vr vrp rvp ? = ? 3) using the same tests as above, calculate bvn and rvn when the 5-v vcc is set to 5 v ? 0.3 v 100 vb vb vbn bvn ? = ? 100 vr vr vrn rvn ? = ? c 8 identification sensitivity b on 1) input a rainbow signal (signal c-1) to the chroma input pin (tp45).burst : chroma = 1 : 1 2) gradually reduce the input signal amplitude from 100 mv p-p . when the b-y output pin (tp47) signal disappears (when the current is dc), measure the input signal amplitude v cb . 3) gradually increase the input signal amplitude from 0 mv p-p . when a demodulation signal appears on the b-y output pin (tp47), measure the input signal amplitude v bc . c 9 bus read identification b on 1) perform the same tests as above while observing the bus read : when the input signal amplitude is v cb , check that the first bit is set to 0 (bcb). when the input signal amplitude is v bc , check that the first bit is set to 1 (bbc). note 1: where the bus data are not specified, set the preset values. note 2: ensure the sync signal is always input to tp38 (sync in).
TA1310ANG 2005-09-20 49 (#16 v cc = 9 v, #37 v cc = 9 v, #51 v cc = 5 v, ta = 25 3c) sw mode note item sw 45 sw 46 measurement method c 10 color difference output voltage difference in 1h period b on 1) input no more than 300-mv p-p as a burst signal to chroma input pin (tp45). 2) measure the dc voltage difference (vbh) between the h blanking period and picture period of the b-y output pin (tp47). 3) measure the dc voltage difference (vrh) between the h blanking period and picture period of the r-y output pin (tp48). c 11 color difference output voltage difference every 1h period b on 1) input no more than 300-mv p-p as a burst signal to chroma input pin (tp45). 2) measure the dc voltage difference (vbg) between the h picture period and h + 1 picture period of the b-y output pin (tp47). 3) measure the dc voltage difference (vrg) between the h picture period and h + 1 picture period of the r-y output pin (tp48). c 12 color difference output dc voltage b on 1) input no more than 300-mv p-p as a burst signal to chroma input pin (tp45). 2) measure the picture period dc voltage v b of the b-y output pin (tp47). 3) measure the picture period dc voltage v r of the r-y output pin (tp48). c 13 difference between dc voltage axes of color difference output b on 1) use the following formula to calculate the difference (v rb ) between the voltage axes from the following formula using the values obtained in c 12 above. v rb = v r ? v b c 14 x?tal free-run frequency a on 1) no signal input to the chroma input pin (tp45) (set sw 45 to a). 2) observe the cw output pin (tp50) and measure the output frequency x f . note 1: where the bus data are not specified, set the preset values. note 2: ensure the sync signal is always input to tp38 (sync in).
TA1310ANG 2005-09-20 50 (#16 v cc = 9 v, #37 v cc = 9 v, #51 v cc = 5 v, ta = 25 3c) sw mode note item sw 45 sw 46 measurement method c 15 apc frequency control sensitivity a off 1) no signal input to the chroma input pin (tp45) (set sw 45 to a). 2) set sw 46 to open and connect an external power supply to the apc filter pin (#46). 3) change the voltage of external power supply to a value regarded as vc3, where the output frequency of the cw output pin (tp50) is 3.579545 mhz (x f ). 4) measure the cw output frequencies x f (+100) and x f ( ? 100) for vc3 + ? vc3 (100 mv). calculate the free-run sensitivity f from the following formula. c 16 apc pull-in / hold range b on 1) input a 3.579545-mhz sine wave (300 mv p-p ) to the chroma input pin (tp45). 2) vary the input sine wave frequency in 10-hz steps from 3.579545 mhz. when the b-y output pin (tp47) picture period amplitude changes, measure the difference between 3.579545 mhz and the varied sine wave frequencies : on the plus side, f h+ , and on the minus side, f h ? (hold). 3) increase and decrease the above measured values by 1 khz : (f h+ ) +1 khz and (f h ? ) ? 1 khz. adjust to approximately 3.579545 mhz in 10-hz steps. when the b-y output pin (tp47) picture period amplit ude changes, measure the difference from 3.579545 mhz : on the plus side, f p+ , and on the minus side, f p ? (pull-in). c 17 residual carrier level b on 1) input a rainbow signal (signal c-1) to the chroma input pin (tp45). burst : chroma = 300 mv p-p : 300 mv p-p 2) measure the color subcarrier leak levels v bno and v rno of the b-y output pin (tp47) and the r-y output pin (tp48). c 18 residual higher harmonic level b on 1) input a rainbow signal (signal c-1) to the chroma input pin (tp45). burst : chroma = 300 mv p-p : 300 mv p-p 2) measure the higher harmonic levels v bhn and v rhn of the b-y output pin (tp47) and the r-y output pin (tp48). note 1: where the bus data are not specified, set the preset values. note 2: ensure the sync signal is always input to tp38 (sync in). 200 100 f x 100 f x f ) ? ( ? ) + ( =
TA1310ANG 2005-09-20 51 (#16 v cc = 9 v, #37 v cc = 9 v, #51 v cc = 5 v, ta = 25 3c) sw mode note item sw 45 sw 46 measurement method c 19 tof-bpf characteristics b on 1) connect the v cc (5 v) via a 750 ? resistor to the r-y output pin (tp48). 2) input a 3.579545-mhz sine wave (50 mv p-p ) to the chroma input pin (tp45). 3) set to bpf mode (subaddress (03h), data (80)). 4) set f 0 of the sine wave to (3.579545 m ? 1 m) hz, measure the output amplitude of tp48, and calculate the gain from the input (gb l ). 5) set f 0 of the sine wave to (3.579545 m+1 m) hz, measure the output amplitude of tp48, and calculate the gain from the input (gb h ). 6) set to tof mode (subaddress (03h), data (81)). 7) set f 0 of the sine wave to (3.579545 m ? 1 m) hz, measure the output amplitude of tp48, and calculate the gain from the input (gt l ). 8) set f 0 of the sine wave to (3.579545 m + 1 m) hz, measure the output amplitude of tp48, and calculate the gain from the input (gt h ). c 20 cw output amplitude b on 1) input a rainbow signal (signal c-1) to the chroma input pin (tp45). burst : chroma = 300 mv p-p : 300 mv p-p 2) measure the amplitude vcw of the cw output pin. note 1: where the bus data are not specified, set the preset value. note 2: ensure the sync signal is always input to tp38 (sync in).
TA1310ANG 2005-09-20 52 color difference stage (#16 v cc = 9 v, #37 v cc = 9 v, #51 v cc = 5 v, ta = 25 3c) sw mode note item sw 6 sw 45 sw 52 sw 53 measurement method a 1 color difference input clamp voltage c a a a 1) connect the color difference input pin to ac-gnd. (set sw 52a and sw 53a to a.) 2) measure the voltage v ry of the r-y input pin (#52) and the voltage v by of the b-y input pin (#53). a 2 color difference input / output delay time c a b b 1) set to external color difference input mode (subaddress (05h), data (81)). 2) now set as follows : unicolor : maximum (subaddress (00h), data (3f)) brightness : maximum (subaddress (01h), data (7f)) color : center (subaddress (02h), data (40)). 3) set sw 52a and sw 53a to b. input signal c-2 to the r-y input pin (tp52) and the b-y input pin (tp53) f 0 = 100 khz, picture period amplitude = 0.2 v p-p. 4) measure the signal delay time (dlry) from the r-y input pin (tp52) to the r output (tp13). 5) measure the signal delay time (dlby) from the b-y input pin (tp53) to the b output (tp15). a 3 unicolor adjustment characteristics c a b b 1) set to external color difference input mode (subaddress (05h), data (81)) 2) now set as follows : brightness : maximum (subaddress (01h), data (7f)) color : center (subaddress (02h), data (40)) relative phase amplitude : standard (subaddress (12h), data (00)). 3) set sw 52a and sw 53a to b. input signal c-2 to the r-y input pin (tp52) and the b-y input pin (tp53). f 0 = 100 khz, picture period amplitude = 0.2 v p-p . 4) set unicolor to the maximum (subaddress (00h), data (3f)). measure the rumax, the amplitude of the r output (tp13), and bumax, the amplitude of b output (tp15). 5) set unicolor to the minimum (subaddress (00h), data (00)). measure the rumin, the amplitude of the r output (tp13), and bumin, the amplitude of b output (tp15). 6) calculate the unicolor adjustment characteristics ur and ub by the following formulas. max ru min ru log 20 ur = max bu min bu log 20 ub = note 1: where the bus data are not specified, set the preset value. note 2: ensure the sync signal is always input to tp38 (sync in).
TA1310ANG 2005-09-20 53 (#16 v cc = 9 v, #37 v cc = 9 v, #51 v cc = 5 v, ta = 25 3c) sw mode note item sw 6 sw 45 sw 52 sw 53 measurement method a 4 color adjustment characteristics c a b b 1) set to external color difference input mode (subaddress (05h), data (81)) 2) now set as follows : unicolor : maximum (subaddress (00h), data (3f)) brightness : maximum (subaddress (01h), data (7f)) relative phase amplitude : standard (subaddress (12h), data (00)). 3) set sw 52a and sw 53a to b. input signal c-2 to the r-y input pin (tp52) and the b-y input pin (tp53). f 0 = 100 khz, picture period amplitude = 0.2 v p-p . 4) set the color to the maximum (subaddress (02h), data (7f)). measure rcmax, the amplitude of the r output (tp13), and bcmax, and the amplitude of the b output (tp15). 5) set the color to the center (subaddress (02h), data (40)). measure rccnt, the amplitude of the r output (tp13), and bccnt, the amplitude of the b output (tp15). 6) set the color to the minimum (subaddress (02h), data (00)). measure rcmin, the amplitude of the r output (tp13), and bcmin, the amplitude of the b output (tp15). 7) calculate the color adjustment characteristics cr max , cr min , cb max , and cb min by the following formulas. cnt rc max rc log 20 max cr = cnt rc min rc log 20 min cr = cnt bc max bc 20log max cb = cnt bc min bc log 20 min cb = note 1: where the bus data are not specified, set the preset value. note 2: ensure the sync signal is always input to tp38 (sync in).
TA1310ANG 2005-09-20 54 (#16 v cc = 9 v, #37 v cc = 9 v, #51 v cc = 5 v, ta = 25 3c) sw mode note item sw 6 sw 45 sw 52 sw 53 measurement method a 5 rgb output half-tone characteristics c or b b a a 1) input a rainbow signal (signal c-1) to the chroma input pin (tp45). burst : chroma = 200 mv p-p : 200 mv p-p . 2) now set as follows : unicolor : maximum (subaddress (00h), data (3f)) brightness : maximum (subaddress (01h), data (7f)) color : center (subaddress (02h), data (40)) relative phase amplitude : standard (subaddress (12h), data (00)). 3) measure the amplitudes v ro , v go , and v bo of the r output pin (tp13), the g output pin (tp14), and the b output pin (tp15). 4) set sw 6 to b and repeat the test in 3) above. measure the amplitudes v rh , v gh , and v bh . 5) calculate the half-tone characteristics v rho , v gho , and v bho by the following formulas. ro v rh v 20log rho v = go v gh v 20log gho v = bo v bh v 20log bho v = 1) input a rainbow signal (signal c-1) to the chroma input pin (tp45). burst : chroma = 200 mv p-p : 200 mv p-p . 2) now set as follows : unicolor : maximum (subaddress (00h), data (3f)) brightness : maximum (subaddress (01h), data (7f)) color : center (subaddress (02h), data (40)). 3) switch the relative phase amplitude (subaddress (12h)) and measure the amplitudes (peak values) of the rgb outputs (tp13, tp14, tp15) according to the table below. a 6 rgb output amplitude c b a a subaddress (12h) data std (00) dvd (40) tsb (80) dtv (c0) tp13 vrstd vrdvd vrtsb vrdtv tp14 vgstd vgdvd vgtsb vgdtv tp15 vbstd vbdvd vbtsb vbdtv a 7 rgb output relative amplitude c b a a 1) using the values obtained in a 06 above, calculate the relative amplitudes by the following formulas. ? ? ? ? ? ? = ? ? ? b v r v rb v ? ? ? ? ? ? = b v g v gb v note 1: where the bus data are not specified, set the preset value. note 2: ensure the sync signal is always input to tp38 (sync in).
TA1310ANG 2005-09-20 55 (#16 v cc = 9 v, #37 v cc = 9 v, #51 v cc = 5 v, ta = 25 3c) sw mode note item sw 6 sw 45 sw 52 sw 53 measurement method 1) input a rainbow signal (signal c-1) to the chroma input pin (tp45). burst : chroma = 200 mv p-p : 200 mv p-p . 2) now set as follows : unicolor : maximum (subaddress (00h), data (3f)) brightness : maximum (subaddress (01h), data (7f)) color : center (subaddress (02h), data (40)). adjust the tint so that the waveform angle of the b-y output pin (tp47) is 0. 3) switch the relative phase amplitude (subaddress (12h)) and measure the phase of the rgb outputs (tp13, tp14, tp15) according to the table below. subaddress (12h) data std (00) dvd (40) tsb (80) dtv (c0) tp13 rstd rdvd rtsb rdtv tp14 gstd gdvd gtsb gdtv tp15 bstd bdvd btsb bdtv a 8 rgb output demodulation angle c b a a (*)the test method is the same as those for c 4 in chroma stage. (measure bar 2 of the g axis.) a 9 rgb output relative phase c b a a 1) using the values obtained in a 08 above, calculate the relative amplitudes by the following formulas. rb*** = r*** ? b*** gb*** = g*** ? b*** note 1: where the bus data are not specified, set the preset value. note 2: ensure the sync signal is always input to tp38 (sync in).
TA1310ANG 2005-09-20 56 (#16 v cc = 9 v, #37 v cc = 9 v, #51 v cc = 5 v, ta = 25 3c) sw mode note item sw 6 sw 45 sw 52 sw 53 measurement method a 10 color difference ext int crosstalk c a b b 1) no signal input to the chroma input pin (tp45) (set sw 45 to a). 2) now set as follows : unicolor : maximum (subaddress (00h), data (3f)) brightness : maximum (subaddress (01h), data (7f)) relative phase amplitude : standard (subaddress (12h), data (00)). 3) set sw 52a and sw 53a to b. input signal c-2 to the r-y input pin (tp52) and the b-y input pin (tp53). f 0 = 4 mhz, picture period amplitude = 0.2 v p-p 4) set to external color difference input mode (subaddress (05h), data (81)). 5) adjust the color data so that the amplitude of the r output pin (tp13) is 2 v p-p . 6) set to internal color difference input mode (subaddress (05h), data (80)). 7) measure the amplitude v xer of the r output pin (tp13) and calculate the amount of crosstalk. 2 xer v 20log xeir = 8) repeat steps 4) to 7) above for the g and b axes and calculate the amount of crosstalk on those axes. 2 xeg v 20log xeig = 2 xeb v 20log xeib = note 1: where the bus data are not specified, set the preset value. note 2: ensure the sync signal is always input to tp38 (sync in).
TA1310ANG 2005-09-20 57 (#16 v cc = 9 v, #37 v cc = 9 v, #51 v cc = 5 v, ta = 25 3c) sw mode note item sw 6 sw 45 sw 52 sw 53 measurement method a 11 color difference int ext crosstalk c b a a 1) input a rainbow signal (signal c-1) to the chroma input pin (tp45). burst : chroma = 200 mv p-p : 200 mv p-p . 2) now set as follows : unicolor : maximum (subaddress (00h), data (3f)) brightness : maximum (subaddress (01h), data (7f)) relative phase amplitude : standard (subaddress (12h), data (00)). 3) set sw 52a and sw 53a to a. 4) set to internal color difference input mode (subaddress (05h), data (80)). 5) adjust the color data so that the amplitude of the r output pin (tp13) is 2 v p-p . 6) set to external color difference input mode (subaddress (05h), data (81)). 7) measure the amplitude v xir of the r output pin (tp13) and calculate the amount of crosstalk. 2 xir v 20log xier = 8) repeat steps 4) to 7) above for the g and b axes and calculate the amount of crosstalk on those axes. 2 xig v 20log xieg = 2 xib v 20log xieb = note 1: where the bus data are not specified, set the preset value. note 2: ensure the sync signal is always input to tp38 (sync in).
TA1310ANG 2005-09-20 58 (#16 v cc = 9 v, #37 v cc = 9 v, #51 v cc = 5 v, ta = 25 3c) sw mode note item sw 6 sw 45 sw 52 sw 53 measurement method 1) set to external color difference input mode (subaddress (05h), data (81)). 2) now set as follows : unicolor : maximum (subaddress (00h), data (3f)) brightness : maximum (subaddress (01h), data (7f)) relative phase amplitude : standard (subaddress (12h), data (00)) y mute : on (set d 7 of subaddress (02h) to 1). 3) set sw 52a to a, set sw 53a to b, and input the signal shown in fig.1) below to the b-y input pin (tp53). 4) set the color to the minimum and measure the picture period dc voltage v b 0 of the b output pin (tp15). 5) increase the color from the minimum. when the picture period dc voltage of the r output pin (tp13) changes, measure the picture period dc voltage v b 1 of the b output pin (tp15). 6) using the values obtained above, calculate the color start point c sp by the following formula. a 12 color characteristics c b a a c sp = v b 1 ? v b 0 note 1: where the bus data are not specified, set the preset value. note 2: ensure the sync signal is always input to tp38 (sync in).
TA1310ANG 2005-09-20 59 y stage (#16 v cc = 9 v, #37 v cc = 9 v, #51 v cc = 5 v, ta = 25 3c) sw mode note item sw 45 measurement method y 1 sync input~dl output ac gain a 1) input signal c-2 to the sync input pin (tp38). f 0 = 100 khz, picture period amplitude = 0.2 v p-p 2) turn dl mode off (subaddress (12), data (80)) and measure the picture period amplitude v 43off of the dl output (tp43). calculate the gain from the input (gyoff) by the formula shown below. 3) turn dl mode on (subaddress (12), data (a0)) and measure the picture period amplitude v 43on of the dl output (tp43). calculate the gain from the input (gyon) by the formula shown below. 2 0 43off v 20log gyoff . = 2 0 43on v 20log gyon . = y 2 sync input~dl output frequency gain a 1) input signal c-2 to the sync input pin (tp38). f 0 = 8 mhz, picture period amplitude = 0.2 v p-p 2) turn dl mode off (subaddress (12), data (80)) and measure the picture period amplitude v 438moff of the dl output (tp43). calculate the gain from the input (gfyoff) by the formula shown below. 3) turn dl mode on (subaddress (12), data (a0)) and measure the picture period amplitude v 438mon of the dl output (tp43). calculate the gain from the input (gfyon) by the formula shown below. 43off v 438moff v 20log gfyoff = 43on v 438mon v 20log gfyon = y 3 sync input~dl output dynamic range a 1) input signal c-3 to the sync input pin (tp38). 2) when the amplitude a of signal c-3 is increased from 0, observe the change in the picture period amplitude of the dl output (tp43). with dl mode turned on and off, when the output amplitude stops changing in a linear direction, measure the input signal amplitude a. y 4 sync input~dl output transfer characteristics a 1) input signal c-2 to the sync input pin (tp38). f 0 = 100 khz, picture period amplitude = 0.2 v p-p 2) turn dl mode on (subaddress (12h), data (20)) and measure the amount of delay tyld from the sync input (#38) to the dl output (tp43). note 1: where the bus data are not specified, set the preset value. note 2: ensure the sync signal is always input to tp38 (sync in).
TA1310ANG 2005-09-20 60 text stage (test conditions v cc = 5 v and 9 v, ta = 25 3c) sw mode & sub address & data note item s 03 s 04 s 05 s 06 s 07 s 08 s 09 s 10 s 54 measurement method t 1 ac gain a a a off a a a off a 1) input signal 1 (f = 100 khz, picture period amplitude = 0.2 v p-p ) to pin 54. 2) measure the picture period amplitudes of pins 13, 14, and 15. (v 13 , v 14 , v 15 ) 3) g r = v 13 / 0.2 g g = v 14 / 0.2 g b = v 15 / 0.2 t 2 frequency characteristics a a a off a a a off a 1) input signal 1 (f = 8 mhz, picture period amplitude = 0.2 v p-p ) to pin 54. 2) measure the picture period amplitudes of pins 13, 14, and 15. (v 13 8 mhz, v 14 8 mhz, and v 15 8 mhz). 3) using the values obtained in t 01 above, calculate the frequency characteristics from the following formulas. 4) g fr = 20 ? og (v 13 8 mhz / v 13 ) g fg = 20 ? og (v 14 8 mhz / v 14 ) g fb = 20 ? og (v 15 8 mhz / v 15 ) t 3 unicolor adjustment characteristics a a a off a a a off a 1) input signal 1 (f = 100 khz, picture period amplitude = 0.2 v p-p ) to pin 54. 2) when the subaddress (00, unicolor) data are changed to the maximum (3f), the center (20), and the minimum (00), measure the picture period amplitude of pin 13. (v u max , v u cnt , v u min ) 3) calculate the maximum, minimum amplitude ratio for unicolor in decibels. ( ? v u ) t 4 brightness adjustment characteristics a a a off a a a off a 1) input signal 2 to pin 54 and adjust the picture period amplitude input of pin 13 to 1 v p-p . 2) when the subaddress (01, brightness) data are changed to the maximum (ff), the center (c0), and the minimum (80), measure the picture period dc voltage of pin 13. (vbr max , vbr cnt , vbr min ) t 5 brightness control sensitivity a a a off a a a off a 1) using the values obtained in t 4 above, calculate the brightness sensitivity from the following formula. 2) gbr = (vbr max ? vbr min ) / 128
TA1310ANG 2005-09-20 61 (test conditions v cc = 5 v and 9 v, ta = 25 3c) sw mode & sub address & data note item s 03 s 04 s 05 s 06 s 07 s 08 s 09 s 10 s 54 measurement method t 6 white peak slice level a a a off a a a off a 1) change the bus data and set the sub-contrast to the maximum. 2) input signal 2 to pin 54 and gradually increase the amplitude. 3) when pin 13's picture period is clipped, measure the picture period amplitude of pin 13 t 7 black peak slice level a a a off a a a off c 1) apply an external power supply to pin 54 and gradually decrease the voltage from 3.7 v. 2) when their picture periods are clipped, measure the picture period amplitudes of pins 13, 14, and 15. t 8 dc restoration a a a off a a a off a 1) input the tg7 stair-step signal to pin 54. 2) adjust the unicolor data so that the pin 13 stair-step output signal is 1.25 v p-p . 3) when the stair-step signal apl is changed from 10% to 90%, measure the voltage change at point a in the diagram below. 4) repeat steps 1) to 3) above on pins 14 and 15.
TA1310ANG 2005-09-20 62 (test conditions v cc = 5 v and 9 v, ta = 25 3c) sw mode & sub address & data note item s 03 s 04 s 05 s 06 s 07 s 08 s 09 s 10 s 54 measurement method t 9 rgb output s / n a a a off a a a off c 1) measure the picture period noise levels of pins 13, 14, and 15 with an oscilloscope. (n 13 , n 14 , n 15 (v p-p )) 2) calculate the s / n for each pin. n 13 = ? 20 log (2.5 / (0.2 n 13 )) n 14 = ? 20 log (2.5 / (0.2 n 14 )) n 15 = ? 20 log (2.5 / (0.2 n 15 )) t 10 rgb output emitter-follower drive current a a a off a a a off c 1) connect a 3.5-v external power supply to pin 13 via a 100- ? resistor (i#13) and measure the sink current on pin 13. 2) perform the same test on pins 14 and 15. (i#14, i#15) t 11 rgb output temperature coefficient a a a off a a a off c 1) when the temperature changes through the range ? 20c to +65c, measure the changes in the picture period amplitudes of pins 13, 14, and 15. 2) calculate the voltage changes per degree of temperature. ( ? t13, ? t14, ? t15) t 12 half-tone characteristics a a a off a a a off a 1) input signal 1 (f = 100 khz, picture period amplitude = 0.2 v p-p ) to pin 54. 2) measure the picture period amplitude of pin 13. (v 13a ) 3) apply 1.5 v dc to pin 6. 4) measure the picture period amplitude of pin 13. (v 13b ) 5) g ht = v 13b / v 13a t 13 half-tone on voltage a a a off a a a off a 1) input signal 1 (f = 100 khz, picture period amplitude = 0.2 v p-p ) to pin 54. 2) connect an external power supply to pin 6 and gradually increase the voltage from 0 v. 3) when the picture period amplitude of pin 13 changes, measure the pin 3 voltage. (v ht ) t 14 v-blk pulse output level a a a off a a a off c 1) measure the voltages of pins 13, 14, and 15 during the vertical blanking period. (v vr , v vg , v vb ) t 15 h-blk pulse output level a a a off a a a off c 1) measure the voltages of pins 13, 14, and 15 during the horizontal blanking period. (v hr , v hg , v hb )
TA1310ANG 2005-09-20 63 (test conditions v cc = 5 v and 9 v, ta = 25 3c) sw mode & sub address & data note item s 03 s 04 s 05 s 06 s 07 s 08 s 09 s 10 s 54 measurement method 1) measure t don and t doff using the signal input to pin 34 (fbn-in) (a below) and the signals output from pins 13, 14, and 15 (b below). (a) signal input to pin 34 t 16 blanking pulse delay time a a a off a a a off c (b) signals output from pins 13, 14, and 15 t 17 sub-contrast control range a a a off a a a off a 1) input signal 1 (f = 100 khz, picture period amplitude = 0.2 v p-p ) to pin 54. 2) when the subaddress (0f, sub-contrast) data are changed to the maximum (8f), the center (88), and the minimum (80), measure the picture period amplitude of pin 13. 3) calculate the maximum and minimum amplitude ratios in relation to the sub-contrast center in decibels. ( ? v su +, ? v su ? ) t 18 rgb output voltage a a a off a a a off c 1) measure the picture period amplitudes of pins 13, 14, and 15. t 19 cut-off voltage control range a a a off a a a off c 1) when the r cutoff (subaddress (08)) data are changed to the maximum (ff), the center (80), and the minimum (00), measure the picture period amplitude of pin 13 and calculate the change in maximum and minimum from the center. (cut+, cut ? ) 2) make the following changes in steps (1) and (2) above and measure : change the subaddress (09) data and measure pin 14. change the subaddress (0a) data and measure pin 15.
TA1310ANG 2005-09-20 64 (test conditions v cc = 5 v and 9 v, ta = 25 3c) sw mode & sub address & data note item s 03 s 04 s 05 s 06 s 07 s 08 s 09 s 10 s 54 measurement method t 20 drive adjustment range a a a off a a a off a 1) input signal 1 (f = 100 khz, picture period amplitude = 0.2 v p-p ) to pin 54. 2) when the g drive subaddress (06) data are changed to the maximum (fe), the center (80), and the minimum (00), measure the picture period amplitude of pin 14. 3) calculate the maximum and minimum amplitude ratios in relation to the drive center in decibels. (drg+, drg ? ) 4) repeat steps 1) to 3) above with the subaddress (07) data and pin 15 instead of 14. (drb+, drb ? ) t 21 #11 input impedance a a a off a a a off c 1) adjust the external power supply voltage until the ammeter reads 0. 2) when the pin 11 voltage is increased by 0.2 v, measure the ammeter current. (i) zin11 ( ? ) = 0.2 (v) i (a) t 22 acl characteristics a a a off a a a off a 1) input signal 1 (f = 100 khz, picture period amplitude = 0.2 v p-p ) to pin 54. 2) measure the picture period amplitude of pin 13 (v acl1 ). 3) apply ? 0.5 v dc to pin 11 from an external power supply and measure the picture period amplitude of pin 13. (v acl2 ) 4) apply ? 1 v dc to pin 11 from an external power supply and measure the picture period amplitude of pin 13. (v acl3 ) 5) acl1 = ? 20 ? og (v acl2 / v acl1 ) acl2 = ? 20 ? og (v acl3 / v acl1 )
TA1310ANG 2005-09-20 65 (test conditions v cc = 5 v and 9 v, ta = 25 3c) sw mode & sub address & data note item s 03 s 04 s 05 s 06 s 07 s 08 s 09 s 10 s 54 measurement method t 23 abl point a a a off a a a off c 1) measure the dc voltage of pin 11 (v abl1 ) 2) set the subaddress (04) data to (83). 3) set the subaddress (00) data to (3f). apply external voltage to pin 11, decrease the pin voltage from 6.5 v. when the voltage of pin 13 starts to change, measure the voltage of pin 11. (v abl2 ) 4) change the subaddress (00) data to (7f), (bf), and (ff), and repeat step 3) for each of these data. (v abl3 , v abl4 , v abl5 ) 5) abl p1 = v abl2 ? v abl1 abl p2 = v abl3 ? v abl1 abl p3 = v abl4 ? v abl1 abl p4 = v abl5 ? v abl1 t 24 abl gain a a a off a a a off c 1) apply 6.5 v from an external power supply to pin 11. 2) set the subaddress (00) data to (3f). 3) set the brightness to the maximum. 4) measure the voltage of pin 13 (v abl6 ) 5) apply 5 v from the external power supply to pin 11. 6) change the subaddress (04) data to (80), (81), (82), and (83), and repeat step 4 for each of these data. (v abl7 , v abl8 , v abl9 , v abl10 ) 7) abl g1 = v abl7 ? v abl6 abl g2 = v abl8 ? v abl6 abl g3 = v abl9 ? v abl6 abl g4 = v abl10 ? v abl6 t 25 blk off mode a a a off a a a off c 1) set the subaddress (01) data to (40) and check that the blanking of pins 13, 14, and 15 is turned off.
TA1310ANG 2005-09-20 66 (test conditions v cc = 5 v and 9 v, ta = 25 3c) sw mode & sub address & data note item s 03 s 04 s 05 s 06 s 07 s 08 s 09 s 10 s 54 measurement method t 26 analog rgb gain b b b on a a a off c 1) input signal 1 (f = 100 khz, picture period amplitude = 0.2 vp-p ) to pin 3. 2) measure the picture period amplitude of pin 13 (v 13r ). 3) as in steps 1) and 2) above, input to pin 4 and measure pin 14 (v 14g ), then input to pin 5 and measure pin 15 (v 15b ). 4) g txr = v 13r / 0.2 g txg = v 14g / 0.2 g txb = v 15b / 0.2 t 27 analog rgb frequency characteristics b b b on a a a off c 1) input signal 1 (f = 8 mhz, picture period amplitude = 0.2 v p-p ) to pin 3. 2) measure the picture period amplitude of pin 13. (v 13r 8 mhz) 3) as in steps 1) and 2) above, input to pin 4 and measure pin 14, then input to pin 5 and measure pin 15. (v 14g 8 mhz, v 15b 8 mhz) 4) calculate the frequency characteristics from the above results and the results obtained in t 26 . gf txr = 20 ? og (v 13r 8 mhz / v 13r ) gf txg = 20 ? og (v 14g 8 mhz / v 14g ) gf txb = 20 ? og (v 15b 8 mhz / v 15b ) t 28 analog rgb input d range b b b on a a a off c 1) set the subaddress (00 : unicolor) data to min (00). 2) input signal 2 to pin 3 and gradually increase picture amplitude a. 3) when the voltage during the picture period of pin 13 stops changing, measure picture amplitude a (dr13). 4) repeat steps 2) and 3) above under the following conditions : input to pin 4, measure the voltage during the picture period of pin 14 (dr14). input to pin 5, measure the voltage during the picture period of pin 15 (dr15).
TA1310ANG 2005-09-20 67 (test conditions v cc = 5 v and 9 v, ta = 25 3c) sw mode & sub address & data note item s 03 s 04 s 05 s 06 s 07 s 08 s 09 s 10 s 54 measurement method t 29 analog rgb white peak slice level b b b on a a a off c 1) input signal 2 to pin 3. gradually increase the picture period amplitude a. 2) when pin 13 is clipped, measure the picture period amplitude of pin 13. 3) as in steps 1) and 2) above, input to pin 4 and measure pin 14, then input to pin 5 and measure pin 15. t 30 analog rgb black peak limiter level a a a on a a a off c 1) apply an external power supply to pin 3. gradually decrease the voltage from 5v dc. when pin 13 is clipped, measure the voltage of pin 13. 2) as in step 1) above, apply to pin 4 and measure pin 14, then apply to pin 5 and measure pin 15. t 31 analog rgb contrast adjustment characteristics b b b on a a a off c 1) input signal 1 (f = 100 khz, picture period amplitude = 0.2 v p-p ) to pin 3. 2) when the subaddress (00, unicolor) data are changed to the maximum (3f), the center (20), and the minimum (00), measure the picture period amplitude of pin 13. (vutxr1, vutxr2, vutxr3) 3) calculate the maximum and minimum amplitude ratios in decibels. 4) as in steps 1), 2) and 3) above, input signal 1 to pin 4 and measure pin 14, then input signal 1 to pin 5 and measure pin 15. t 32 analog rgb brightness adjustment characteristics b b b on a a a off c 1) input signal 2 to pins 3, 4, and 5. 2) adjust the signal 2 amplitude a so that the picture period amplitude of pin 13 is 0.5 v p-p . 3) when the subaddress (05, rgb brightness) data are changed to the maximum (f8), the center (88), and the minimum (08), measure the picture period amplitudes of pins 13, 14, and 15. (vbr tx1 , vbr tx2 , vbr tx3 )
TA1310ANG 2005-09-20 68 (test conditions v cc = 5 v and 9 v, ta = 25 3c) sw mode & sub address & data note item s 03 s 04 s 05 s 06 s 07 s 08 s 09 s 10 s 54 measurement method t 33 analog rgb mode on voltage b a a off a a a off c 1) input signal 1 (f = 100 khz, picture period amplitude = 0.2 v p-p ) to pin 3. 2) apply an external power supply to pin 6. gradually increase the voltage from 0 v. 3) when signal 1 is output to pin 13, measure the voltage of pin 6. t 34 analog rgb mode transfer characteristics a a a off a a a off c 1) set the subaddress (05, rgb brightness) data to the maximum (f8). 2) input signal 3 (signal amplitude 4.5 v p-p ) to pin 6. 3) measure the switching transfer characteristics of pins 13, 14, and 15 according to diagram t-2. 4) using the data obtained from the above measurements, calculate the maximum axis difference between the rising and falling edges of transfer delay time. t 35 crosstalk from video to analog rgb a a a off or on a a a off a 1) input signal 1 (f = 4 mhz, picture period amplitude = 0.5 v p-p ) to pin 54. 2) adjust the input amplitude so that the picture period amplitude of pin 13 is 2 v p-p . 3) turn sw 6 on. 4) measure the picture period amplitude (v p-p ) of pin 13. (v 13a ) 5) calculate by the following formula the amount of crosstalk from the video to the analog rgb. vv ar = ? 20 ? og (v 13a / 2) 6) repeat steps 4) and 5) above on pins 14 and 15.
TA1310ANG 2005-09-20 69 (test conditions v cc = 5 v and 9 v, ta = 25 3c) sw mode & sub address & data note item s 03 s 04 s 05 s 06 s 07 s 08 s 09 s 10 s 54 measurement method t 36 crosstalk from analog rgb to video b b b on or off a a a off c 1) turn sw 6 on. 2) input signal 1 (f = 4mhz, picture period amplitude = 0.5 v p-p ) to pin 3. 3) adjust the input amplitude so that the picture period amplitude of pin 13 is 2 v p-p . 4) turn sw 6 off. 5) measure the picture period amplitude (v p-p ) of pin 13. (v 13b ) 6) calculate by the following formula the amount of crosstalk from the analog rgb to the video. va ar = ? 20 ? og (v 13b / 2) 7) as in steps 2) to 6) above, input to pin 4 and measure pin 14, then input to pin 5 and measure pin 15 t 37 analog osd gain a a a off b b b on c 1) input signal 1 (f = 100 khz, picture period amplitude = 0.2 v p-p ) to pin 7. 2) measure the picture period amplitude of pin 13. (v 13r ) 3) as in steps 1) and 2) above, input to pin 8 and measure pin 14, then input to pin 9 and measure pin 15. (v 14g , v 15b ) 4) g osdr = v 13r / 0.2 g osdg = v 14g / 0.2 g osdb = v 15b / 0.2 t 38 analog osd frequency characteristics a a a off b b b on c 1) input signal 1 (f = 8 mhz, picture period amplitude = 0.2 v p-p ) to pin 7. 2) measure the picture period amplitude of pin 13. (v 13r 8mhz) 3) as in steps 1) and 2) above, input to pin 8 and measure pin 14, then input to pin 9 and pin 15. (v 14g 8 mhz, v 15b 8 mhz) 4) calculate the frequency characteristics from the above results and the results in t 37 . 5) gf osdr = 20 ? og (v 13r 8 mhz / v 13r ) gf osdg = 20 ? og (v 14g 8 mhz / v 14g ) gf osdb = 20 ? og (v 15b 8 mhz / v 15b )
TA1310ANG 2005-09-20 70 (test conditions v cc = 5 v and 9 v, ta = 25 3c) sw mode & sub address & data note item s 03 s 04 s 05 s 06 s 07 s 08 s 09 s 10 s 54 measurement method t 39 analog osd output level a a a off a a a off c 1) when 0v (dc) is input from an external power supply to pin 7, when 7.5 v is input to pin 7, and when no external voltage is applied to pin 7, measure the picture period amplitude of pin 13. (v osd1r , v osd2r , v osd3r ) 2) as in step 1) above, input to pin 8 and measure pin 14, then input to pin 9 and measure pin 15. (v osd1g , v osd2g , v osd3g ) (v osd1b , v osd2b , v osd3b ) t 40 analog osd mode on voltage a a a off b a a off c 1) input signal 1 (f = 100 khz, picture period amplitude = 0.2 v p-p ) to pin 7. 2) apply an external power supply to pin 10. gradually increase the voltage from 0 v. 3) when signal 1 is output to pin 13, measure the pin 10 voltage. t 41 analog osd mode transfer characteristics a a a off a a a off c 1) apply 2.5 v from an external power supply to pins 7, 8, and 9. 2) input signal 4 (signal amplitude = 4.5 v p-p ) to pin 10. 3) measure the switching transfer characteristics of pins 13, 14, and 15 according to diagram t-2. 4) using the data obtained from the above measurements, calculate the maximum axis difference between the rising and falling edge of the transfer delay time. t 42 rgb output self-diagnosis a a a off a a a off a 1) set the bus control data to read mode and reset. 2) set to read mode again. 3) check that the read mode parameter (rgb-out) is 0 (error). 4) measure the voltage of pin 54 and apply that voltage +0.7 v to pin 53 using an external power supply. 5) set to read mode again. 6) check that the read mode parameter (rgb-out) is 1 (ok).
TA1310ANG 2005-09-20 71 (test conditions v cc = 5 v and 9 v, ta = 25 3c) sw mode & sub address & data note item s 03 s 04 s 05 s 06 s 07 s 08 s 09 s 10 s 54 measurement method t 43 acb input pulse phase, amplitude a a a off a a a off a or c 1) input signal 1 (f = 100 khz, picture amplitude 0.2 v p-p ) to pin 53 and adjust drive data so that the picture period amplitude of pins 14 and 15 equals that of pin 13. 2) set sw 54 to c. 3) measure the voltages on pins 17, 18, and 19 and apply the measured voltages to the pins from an external power supply. 4) set the subaddress (11) data to (50). 5) according to the voltage on pins 13, 14, and 15 in figure 1 below, determine the phase of acb input pulse. note : the phase starts after the v-blk period. the picture period after the falling edge of fbp input is 1 h ; then, every time h-blk ends, the period is 2 h, 3 h, and so on. 6) according to pins 13, 14, and 15 the voltage on, determine the acb input pulse amplitude (amplitude from the blk level at rgb-blk off).
TA1310ANG 2005-09-20 72 (test conditions v cc = 5 v and 9 v, ta = 25 3c) sw mode & sub address & data note item s 03 s 04 s 05 s 06 s 07 s 08 s 09 s 10 s 54 measurement method t 44 acb clamp current a a a off a a a off c 1) set pin 17 to open, connect a 1-k ? resistor to the pin, and apply 3v to the pin from the power supply. 2) when the subaddress (11) data are set to (10), (30), (50), and (70), measure from the waveform of pin 17 the current flowing to gnd during the clamp period. (i17a, i17b, i17c i17d ) 3) repeat the measurements in steps 1) and 2) above on pins 18 and 19. (i18a, i18b, i18c i18d ) (i19a, i19b, i19c i19d ) t 45 ik input amplitude a a a off a a a off c 1) connect tp13 to tp13b ; tp14 to tp14b ; tp15 to tp15b. 2) set sw 20 to b. 3) set the subaddress (11) data to (50). 4) by referring to figure 1 of t 43 , determine the voltage output from pins 13, 14, and 15 (ikr, ikg, ikb) during the acb pulse input to the signal input to pin 20.
TA1310ANG 2005-09-20 73 (test conditions v cc = 5 v and 9 v, ta = 25 3c) sw mode & sub address & data note item s 03 s 04 s 05 s 06 s 07 s 08 s 09 s 10 s 54 measurement method t 46 rgb correction characteristics a a a off a a a off a 1) input a ramp waveform to pin 54 (y in) and adjust the input amplitude so that the picture period amplitude of pin 13 is 2.5 v p-p . 2) adjust the drive adjustment data so that the picture period amplitudes of pins 14 and 15 are equal to that of pin 13. 3) set the subaddress (13) data to (81). 4) using pins 13, 14, and 15, calculate the rgb start point and its gradient (in decibels) in relation to the off point, using fig.1 below.
TA1310ANG 2005-09-20 74 (test conditions v cc = 5 v and 9 v, ta = 25 3c) sw mode & sub address & data note item s 03 s 04 s 05 s 06 s 07 s 08 s 09 s 10 s 54 measurement method t 47 vk output characteristics a a a on b b b off c 1) input a sync signal to pin 38. 2) input a ramp waveform (1.25 v p-p ) to pins 7, 8, and 9 during the picture period. 3) acquire vk1 and vk2 of the input level, by means of monitering the vka and the inflection points of the output waveform for pin #12.
TA1310ANG 2005-09-20 75 (test conditions v cc = 5 v and 9 v, ta = 25 3c) sw mode & sub address & data note item symbol s 03 s 04 s 05 s 06 s 07 s 08 s 09 s 10 s 54 measurement method t 48 acb protection circuit operating monitor 1 acbpr acbpg a a a off a a a off c 1) set the subaddress (11) data to (a0). 2) apply 8.0 v to pin 17. 3) monitor pin 13 and confirm that the picture period has not dropped to the blk level (acbpr). 4) monitor pin 14 and confirm that the picture period has not dropped to the blk level (acbpg) t 49 acb protection circuit operating monitor 2 acbbrar acbbrag a a a off a a a off c 1) set the subaddress (11) data to (c0). 2) apply 8.0 v to pin 17. 3) monitor pin 13 and confirm that the picture period is at the blk level (acbbrar). 4) monitor pin 14 and confirm that the picture period is at the blk level (acbbrag) t 50 acb protection circuit operating monitor 3 acbbrlo a a a off a a a off c 1) set the subaddress (11) data to (c0). 2) apply 6.8 v to 9 v v cc (pin 16). 3) apply 6.8 v to pin 17. 4) monitor pin 13 and confirm that the picture period has not dropped to the blk level (acbbrlo) s52 s53 ? t 51 base bandtint adjustment characteristics ang rmin ang bmin ang rmax ang bmax a a a off on on ? off c 1) change subaddress (05) h to (81) h. 2) set unicolor = max ; bright = max ; color = center. 3) input signal 1 (f 0 = 100 khz, 100 mv p-p ) to pin 53. 4) to pin 52, input a signal with the same amplitude but 90c phase advanced compared to the signal input to pin 53. 5) when su baddress (14) h is changed to (c0) h (80) h, measure the amount of change in the output phase of pin 13. (ang rmin) 6) under the same conditions as 5) above, measure the amount of change in the output phase of pin 15. (ang bmin) 7) when subaddress (14) h is changed to (c0) h (ff), measure the amount of change in the output phase of pin 13. (ang rmax) 8) under the same conditions as 7) above, measure the amount of change in the output phase of pin 15. (ang bmax)
TA1310ANG 2005-09-20 76 (test conditions v cc = 5 v and 9 v, ta = 25 3c) sw mode & sub address & data note item symbol s 03 s 04 s 05 s 06 s 07 s 08 s 09 s 10 s 54 measurement method t 52 base bandtint adjustment position bus b0 a a a off on on ? off c 1) change subaddress (05) h to (81) h. 2) set unicolor = max ; bright = max ; color = center.relative amplitude, phase switching: change subaddress (12) h to (00). 3) input signal 1 (f 0 = 100 khz, 100 mv p-p ) to pin 53. 4) to pin 52, input a signal with the same amplitude but 90c phase advanced compared to the signal input to pin 53. 5) changing subaddress (14) h from (c0) h, read the transmission data at subaddress (14) h when the output phase of the pin 15 signal is the same as the input phase of the pin 53 signal. (bus b0)
TA1310ANG 2005-09-20 77 deflection stage test conditions (def v cc = 9 v, ta = 25 3c, bus data = power-on reset) sw mode note item sw 34 sw 38 measurement method d 1 sync separation input sensitivity current off b when the number of h periods in the #33 (vd out) waveform changes from 297 to 225, increase the voltage from 3 v and measure the value at in the diagram. d 2 v separation filter pin source current off b when the subaddress (0d) d 1 is set to (1), measure the value at in the diagram. d 3 v separation level off b when #38 (sync in) is connected to gnd, measure the #39 (vsep filter) voltage. set the voltage to around 7.5 v, equivalent to when #40 (afc1 filter) has no load. when a signal as shown in the diagram below is input to #38 (sync in) from tg7, calculate v 1 and v 2 using the #40 waveform. d 4 h afc phase detection curren h afc phase detection current ratio off a i det = v 1 1 k ? (a) ? i det = (v 1 / v 2 ? 1) 100 (%) d 5 phase detection stop period off a input a composite video signal to #38 and measure the v mask period of the #40 (afc1 filter) waveform.
TA1310ANG 2005-09-20 78 note d5 : phase detection stop period
TA1310ANG 2005-09-20 79 test conditions (def v cc = 9 v, ta = 25 3c, bus data = power-on reset) sw mode note item sw 34 sw 38 measurement method d 6 32*f h vco oscillation start voltage off b increase the voltage from 2.5 v. when an oscillation waveform appears on tp41, measure the voltage. at the same time, check that no waveform is output (0v dc) to #35 (h out).(apply only def v cc .) d 7 horizontal output start voltage off b increase the voltage. when a horizontal pulse appears on #35 (h out), measure the voltage. note that the horizontal oscillation frequency at this time is near f ho (15.7 khz 1 khz). (apply only def v cc .) 1) under the above conditions, when no horizontal pulse is output on #35, read d 4 in bus read mode. (apply also the chroma v cc .) (v bus hoff ) 2) under the above conditions, when a horizontal pulse is output on #35, read d 4 in bus read mode. (apply also the chroma v cc .) (v bus hon ) observe the #35 (h out) waveform and measure t1 and t2. d 8 horizontal output pulse duty off b 100(%) t2 t1 t1 h35 t + = d 9 phase detection stop mode off b input a composite video signal to tp38. when the subaddress (0d) d 1 is set to (1), measure the oscillation frequency of the #35 (h out) waveform. d 10 horizontal free-run frequency off b measure the oscillation frequency of #35 (h out). d 11 horizontal oscillation frequency range off b 1) when #40 (afc1 filter) is connected to def v cc via a 10-k ? resistor, measure the #35 (h out) oscillation frequency. (v hmin ) 2) when #40 (afc1 filter) is connected to gnd via a 68-k ? resistor, measure the #35 (h out) oscillation frequency. (v hmax ) d 12 horizontal oscillation control sensitivity off b when the voltage on #40 (afc1 filter) is varied by 0.05 v with a horizontal oscillation frequency of 15.734 khz, calculate the #35 (h out) frequency variation rate.
TA1310ANG 2005-09-20 80 test conditions (def v cc = 9 v, ta = 25 3c, bus data = power-on reset) sw mode note item sw 34 sw 38 measurement method d 13 horizontal output voltage off b 1) measure the high-level voltage of #35 (h out) (when #35 is connected to gnd via a 481- ? resistor). (v h35 ) 2) measure the low-level voltage of #35 (h out) (when #35 is connected to gnd via a 481- ? resistor). (v l35 ) d 14 supply voltage dependence of horizontal oscillation frequency off b when the #37 (def v cc ) voltage is varied from 8.5 v to 9.5 v, measure the variation in the #35 (h out) oscillation frequency. d 15 temperature dependence of horizontal oscillation frequency off b when the temperature is varied through the range ? 20c to +60c, measure the variation in the #35 (h out) oscillation frequency. d 16 horizontal sync phase off a when a signal as shown at left is input to tp38 from tg7, measure the phase difference of the #34 (fbp in) waveform in relation to the #40 (afc1 filter) waveform (s ph1 ). also measure the phase difference of the #40 waveform in relation to the center of the input horizontal sync signal (s ph2 ). d 17 horizontal picture phase adjustment range off a under the above conditions, when the subaddress (0b) d 7 to d 3 are varied from (00000) to (11111), measure the phase variation in the #34 (fbp in) waveform.
TA1310ANG 2005-09-20 81 test conditions (def v cc = 9 v, ta = 25 3c, bus data = power-on reset) sw mode note item sw 34 sw 38 measurement method d 18 horizontal blanking pulse threshold on a decrease the amplitude of #34 (fbp in) from 9 v p-p . when afc2 stops locking, measure the amplitude. (v hblk1 ) increase the amplitude of #34 (fbp in) from 0 vp-p. when horizontal blanking is applied to #13 (r in), measure the amplitude. (v hblk2 ) input a signal as shown below to tp38 from tg7. when the voltage is varied from 3 v to 6 v, measure the phase variation in the #34 (fbp in) waveform. d 19 curve correction range off a d 20 h cycle black peak detection disable pulse off a set the subaddress (01) d 7 to (0), set the subaddress (05) d 3 ~d 1 to (010), and set the subaddress (0c) d 0 to (1). when a signal as shown at left is input to tp38 from tg7, measure the #32 (hd out) waveform phase difference hbp s and pulse width hbp w in relation to the #40 (afc1 filter) waveform. d 21 threshold of external black peak detection disable pulse off a set the subaddress (02) d 7 to (1). increase the voltage from 0 v. when #52 reaches 3.4 v dc, measure the voltage.
TA1310ANG 2005-09-20 82 test conditions (def v cc = 9 v, ta = 25 3c, bus data = power-on reset) sw mode note item sw 34 sw 38 measurement method set the subaddress (01) d 7 to (0), set the subaddress (05) d 3 ~d 1 to (001), and set the subaddress (0c) d 0 to (1). d 22 clamp pulse start phase clamp pulse width off a input a signal as shown at left to tp38 from tg7, then measure the #32 (hd out) waveform phase difference cp s and pulse width cp w in relation to the #40 (afc1 filter) waveform. d 23 hd output start phase hd output pulse width hd output amplitude off a input a signal as shown at left to tp38 from tg7, then measure the #32 (hd out) waveform phase difference hd s and pulse width hd w and v hd in relation to the #40 (afc1 filter) waveform. d 24 gate pulse start phase gate pulse width off a input a signal as shown at left to tp38 from tg7, then measure the #34 (fbp in) waveform phase difference gp s and pulse width gp w in relation to the #40 (afc1 filter) waveform.
TA1310ANG 2005-09-20 83 note d24 : gate pulse v mask period
TA1310ANG 2005-09-20 84 test conditions (def v cc = 9 v, ta = 25 3c, bus data = power-on reset) sw mode note item sw 34 sw 38 measurement method d 25 gate pulse v mask period off a input a composite video signal to tp38, observe the #34 (fbp in) waveform, and measure the v ma sk period. d 26 sync out low level off a input a composition video signal to tp38, observe the #36 (sync out) waveform, and measure the low level of the sync period. d 27 vertical oscillation start voltage off b increase the voltage from 0 v. when a pulse is output from #33 (vd out), measure the voltage. (apply only def v cc .) d 28 vertical free-run frequency off b measure the frequency of #33 (vd out). d 29 vertical output voltage off b 1) measure the high level voltage of the #33 (vd out) waveform. (v vh ) 2) measure the low level voltage of the #33 (vd out) waveform. (v vl ) d 30 service mode switching off b when the subaddress (0c) d 0 is set to (1), check that the #27 (v.ramp) waveform is low (3.4 v dc). d 31 vertical pull-in range off c input a composite video signal to tp38, vary the vertical frequency of this signal in 0.5-h steps , and measure the vertical pull-in range. d 32 vertical frequency forced 263h vertical frequency forced 262.5h off b 1) measure the number of h periods of #33 (hd out) when the subaddress (0d) d 1 and d 0 are set to (10). (f v1 ) 2) measure the number of h periods of #33 (hd out) when the subaddress (0d) d 1 and d 0 are set to (11). (f v2 ) d 33 vertical blanking off mode off b set the subaddress (01) d 7 to (1) and check that no vertical or horizontal blanking pulse is applied to #13 (r out), #14 (g out), or #15 (b out).
TA1310ANG 2005-09-20 85 test conditions (def v cc = 9 v, ta = 25 3c, bus data = power-on reset) sw mode note item sw 34 sw 38 measurement method d 34 vertical output pulse width off c input a composite video signal to tp38, then measure the #33 (vd out) vertical pulse delay t d and pulse width t w in relation to the vertical sync signal of #38 (sync in). d 35 rgb output vertical blanking pulse start phasergb output vertical blanking pulse stop phase off c input a composite video signal to tp38, then measure the #13 (r out) waveform phase difference vr s1 and pulse width vr s2 in relation to the #38 (sync in) waveform. repeat measurement on #14 and #15. set the subaddress (11) d 4 ~d 1 to (1111) and the subaddress (12) d 4 ~d 1 to (1111). d 36 v cycle black peak detection disable pulse (normal) off c input a composite video signal to tp38 and measure the v cycle black peak detection disable pulse period of #55 (black pe ak det). d 37 v cycle black peak detection disable pulse (zoom) off c under the conditions in d 38 above, set the subaddress (0c) d1 to (1) and measure the v cycle black peak detection disable period of #55.
TA1310ANG 2005-09-20 86 note d34 : vertical output pulse width, vertical output pulse phase variation, and vertical output pulse phase range note d35 : rgb output vertical blanking pulse start and stop phases
TA1310ANG 2005-09-20 87 note d36 : video mute period (normal) field 2 to field 1 field 1 to field 2 d37 : video mute period (zoom) field 2 to field 1 field 1 to field 2
TA1310ANG 2005-09-20 88 note d38 : v cycle black peak detection disable pulse (normal) field 2 to field 1 field 1 to field 2 note d39 : v cycle black peak detection disable pulse (zoom) field 2 to field 1 field 1 to field 2
TA1310ANG 2005-09-20 89 deflection correction stage test conditions (def v cc = 9 v, ta = 25 3c, bus data = power-on reset) sw mode note item sw 28 measurement method g 1 vertical ramp amplitude a measure the amplitude of the vertical ramp wave on #27. g 2 vertical amplification a g 3 vertical amp maximum output voltage a g 4 vertical amp minimum output voltage a set #24 and #25 to open. set the subaddress (0c) data to (81). connect #25 to an external power supply. when the voltage is varied from 5.5 v to 6.5 v, measure the vertical amplification on the #24 voltage. (g v ) (v h24 ) (v l24 ) g 5 vertical amp maximum output current a set #24 and #25 to open. apply 7 v to #25 from an external source. insert an ammeter between #24 and gnd, and measure the current. g 6 vertical nf sawtooth wave amplitude a measure the amplitude of the #25 waveform (vertical sawtooth waveform). g 7 vertical amplitude range a when the subaddress (0c) data are set to (00) and (fc), measure the amplitudes of the #25 waveform (vertical sawtooth waveform) v p25 (00) and v p25 (fc) . 100(%) 00 p25 v fc p25 v 00 p25 v fc p25 v ph v ) ( + ) ( ) ( ? ) ( =
TA1310ANG 2005-09-20 90 test conditions (def v cc = 9 v, ta = 25 3c, bus data = power-on reset) sw mode note item sw 28 measurement method g 8 vertical linearity correction maximum value a set the subaddress (0e) data to (f8). change the subaddress (10) d 7 ~d 4 so that the #22 parabola waveform is symmetrical. set the subaddress (0e) data to (00). when the subaddress (0f) data are (80), measure the #25 waveform v 1 (80) and v 2 (80). likewise, when the subaddress (0f) data are (00) and (f0), measure v 1 (00), v 2 (00), v 1 (f0), and v 2 (f0). ) + ( ? + ? (80) 2 v (80) 1 v 2 (00) 2 v (f0) 2 v (f0) 1 v (00) 1 v i v = g 9 vertical s correction maximum value a set the subaddress (0e) data to (f8). change the subaddress (10) d 7 ~d 4 so that the #22 parabola waveform is symmetrical. set the subaddress (0e) data to (00). when the subaddress (0e) data are (80), measure the amplitude of the #25 waveform v s25 (80) . likewise, when the subaddress (0e) data are (87), measure the amplitude of the #25 waveform v s25 (87) . (%) 100 ) 80 ( 25 s v ) 87 ( 25 s v ) 80 ( 25 s v s v ? =
TA1310ANG 2005-09-20 91 test conditions (def v cc = 9 v, ta = 25 3c, bus data = power-on reset) sw mode note item sw 28 measurement method g 10 vertical nf center voltage a set the subaddress data (0e) to (f8). change the subaddress (10) d 7 ~d 4 so that the #22 parabola waveform is symmetrical. set the subaddress data (0e) to (00). measure the center voltage v c of the #25 waveform. g 11 vertical nf dc change a under the conditions in g 10 above, set the subaddress (13) data to (80) and measure the vertical nf center voltage v c (80) . next, set the subaddress (13) data to (00) and measure the vertical nf center voltage v c (00) . v dc = v c (00) ? v c (80) (v) g 12 vertical amplitude eht correction a set the subaddress (0e) data to (f8). change the subaddress (10) d 7 ~d 4 so that the #22 parabola waveform is symmetrical. set the subaddress (0e) data to (00). connect #28 to gnd and measure the amplitude of the #25 waveform v eht (0v). connect #28 to a 5-v power supply and measure the amplitude of the #25 waveform v eht (5 v) . (%) 100 5v eht v 0v eht v 5v eht v veht ) ( ) ( ? ) ( =
TA1310ANG 2005-09-20 92 test conditions (def v cc = 9 v, ta = 25 3c, bus data = power-on reset) sw mode note item sw 28 measurement method g 13 e-w nf maximum dc value (picture width) set the subaddress (0e) data to (f8). change the subaddress (10) d 7 ~d 4 so that the #22 parabola waveform is symmetrical. set the subaddress (0e) data to (00). set the subaddress (0d) data to (00) and measure the #22 voltage v l22 . set the subaddress (0d) data to (fc) and measure the #22 voltage v h22 . g 14 e-w nf minimum dc value (picture width) a set the subaddress (0d) data to (00) and the subaddress (0e) data to (f8). measure the amplitude of the #22 waveform (parabola waveform) v pb . g 15 e-w nf parabola maximum value (parabola) a
TA1310ANG 2005-09-20 93 test conditions (def v cc = 9 v, ta = 25 3c, bus data = power-on reset) sw mode note item sw 28 measurement method set the subaddress (0e) data to (f8). change the subaddress (10) d 7 ~ d 4 so that the #22 parabola waveform is symmetrical. set the subaddress (10) d 3 ~d 0 to (0) and measure the amplitude of the #22 waveform v cr (0) . likewise, when the subaddress (10) data are set to (f), measure the #22 waveform amplitude v cr (f) . g 16 e-w nf corner correction (corner) a v cr = v cr (f) ? v cr (0) g 17 parabola symmetry correction a set the subaddress (14) data to (7f). set the subaddress (10) data to (00) and measure the vertical nf center voltage of the #25 waveform v c (00) . likewise, when the subaddress (10) data are set to (fc), measure the #25 voltage v c (fc) . (%) 100 25 p v 2 ) fc ( c v ) 00 ( c v tr v ? =
TA1310ANG 2005-09-20 94 test conditions (def v cc = 9 v, ta = 25 3c, bus data = power-on reset) sw mode note item sw 28 measurement method g 18 e-w amp maximum output current a connect an ammeter between #23 and gnd. measure the current. g 19 agc operating current 1 a g 20 agc operating current 2 a measure the tp26 waveform peak value. (v agc0 ) set the subaddress (06) d 0 to (1) and repeat the measurement. (v agc1 ) i agc0 = v x 200 (a) (i agc1 ) g 21 vertical guard voltage a set #25 to open. connect an external power supply to #25. decrease the voltage from 5 v. when full blanking is applied to #13, measure the voltage. g 22 e / w output self-diagnosis a connect a 5-v external power supply to #23. read d 2 in bus read mode. (v bus ew off ) when the external power supply connected to #23 is disconnected, read d 2 in bus read mode. ensure that an e / w waveform is output from #22. (v bus ew on ) g 23 v-out output self-diagnosis a connect a 9-v external power supply to #24. read d 3 in bus read mode. (v bus v off ) when the external power supply connected to #24 is disconnected, read d 3 in bus read mode. ensure that a v-out waveform is output from #25. (v bus v on ) g 24 vertical blanking check a 1) set the subaddress (0c) data to (81). 2) when the subaddress (11) d 4 ~d 0 are changed from 0000 to 1111, check that the #13 blanking stop phase begins. (v blk1 ) 3) when the subaddress (12) d 4 ~d 0 are changed from 0000 to 1111, check that the #13 blanking start phase begins. (v blk2 ) g 25 v centering dac output a 1) set the subaddress (13) data to (00) and measure the #21 voltage v 21l . 2) set the subaddress (13) data to (80) and measure the #21 voltage v 21m . 3) set the subaddress (13) data to (fe) and measure the #21 voltage v 21h . g 26 v nfb pin input current a connect a 9-v v cc via a 100-k ? resistor to #25. measure the sink current on #25 according to the voltage difference of the 100-k ? resistance. i 25 = v / 100 k ?
TA1310ANG 2005-09-20 95 1) input signal c-1 2) input signal c-2 3) input signal c-3 fig.c test signals for TA1310ANG chroma, color difference, and y stage
TA1310ANG 2005-09-20 96 1) video signal 2) input signal 1 3) input signal 2 fig.t-1 test signals for TA1310ANG text stage
TA1310ANG 2005-09-20 97 fig.t-2 test pulses for TA1310ANG text stage
TA1310ANG 2005-09-20 98 test circuit dc t a 1 3 1 0 a n g
TA1310ANG 2005-09-20 99 test circuit ac characteristics for picture sharpness stage t a 1 3 1 0 a n g
TA1310ANG 2005-09-20 100 test circuit chroma stage t a 1 3 1 0 a n g
TA1310ANG 2005-09-20 101 test circuit color difference stage t a 1 3 1 0 a n g
TA1310ANG 2005-09-20 102 test circuit y stage t a 1 3 1 0 a n g
TA1310ANG 2005-09-20 103 test circuit diflection stage and deflection correction stage t a 1 3 1 0 a n g
TA1310ANG 2005-09-20 104 application circuit t a 1 3 1 0 a n g
TA1310ANG 2005-09-20 105 package dimensions weight: 5.55 g (typ.)
TA1310ANG 2005-09-20 106


▲Up To Search▲   

 
Price & Availability of TA1310ANG

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X